Current Browsing: Remote Sensing Technology


HiWATER: Wide-angle Infrared Dual-mode line/area Array Scanner, WIDAS (26th, July, 2012)

On 26 July 2012, a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes an CCD cameras with spatial resolution 0.2 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1 m), and a thermal image camera with spatial resolution 4.8 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The multispectral camera data are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-15

HiWATER: Visible and near-infrared hyperspectral radiometer (7th, July, 2012)

On 7 July 2012 (UTC+8), a CASI/SASI sensor boarded on the Y-12 aircraft was used to obtain the visible/near Infrared hyperspectral image, which is located in the observation experimental area. The relative flight altitude is 2000 meters, The wavelength of CASI and SASI is 380-1050 nm and 950-2450 nm, respectively. The spatial resolution of CASI and SASI is 1 m and 2.4 m, respectively. Through the ground sample points and atmospheric data, the data product are recorded in reflectance processed by geometric correction and atmospheric correction based on 6S model.

2019-09-15

HiWATER: Dataset of fractional vegetation cover and biomass observed in the middle of Heihe River Basin (2013)

The dataset includes the fractional vegetation cover data generated from the stations of crop land, wetland, Gebi desert and desert steppe in Yingke Oasis and biomass data generated from the stations of crop land (corn) and wetland. The observations lasted for a vegetation growth cycle from 19 May, 2012 to 15 September, 2012. 1. Fractional vegetation cover observation 1.1 Observation time 1.1.1 Station of the crop land: The observations lasted from 20 May, 2012 to 15 September, 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the station of crop land (corn) are 2013-5-20, 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.1.2 The other four stations: The observations lasted from 20 May, 2012 to 15 September, 2012 and in ten-day periods for each observation. The observation time for the crop land are 2013-5-20, 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 1.2 method 1.2.1 Instruments and measurement method Digital photography measurement is implemented to measure the FVC. Plot positions, photographic method and data processing method are dedicatedly designed. In field measurements, a long stick with the camera mounted on one end is beneficial to conveniently measure various species of vegetation, enabling a larger area to be photographed with a smaller field of view. The stick can be used to change the camera height; a fixed-focus camera can be placed at the end of the instrument platform at the front end of the support bar, and the camera can be operated by remote control. 1.2.2 Design of the samples Three and two plots with the area of 10×10 m^2 were measured for the station of the crop land and wetland, respectively. One plot with the area of 10×10 m^2 was measured for the other three stations. Shoot 9 times along two perpendicularly crossed rectangular-belt transects. The picture generated of each time is used to calculate a FVC value. “True FVC” of the plot is then acquired as the average of these 9 FVC values. 1.2.3 Photographic method The photographic method used depends on the species of vegetation and planting pattern. A long stick with the camera mounted on one end is used for the stations of crop land and wetland. For the station of the crop land, rows of more than two cycles should be included in the field of view (<30), and the side length of the image should be parallel to the row. If there are no more than two complete cycles, then information regarding row spacing and plant spacing are required. The FVC of the entire cycle, that is, the FVC of the quadrat, can be obtained from the number of rows included in the field of view. For other three stations, the photos of FVC were obtained by directly photographing for the lower heights of the vegetation. 1.2.4 Method for calculating the FVC The FVC calculation was implemented by the Beijing Normal University. The detail method can be found in the reference below. Many methods are available to extract the FVC from digital images, and the degree of automation and the precision of identification are important factors that affect the efficiency of field measurements. This method, which is proposed by the authors, has the advantages of a simple algorithm, a high degree of automation and high precision, as well as ease of operation (see the reference). 2. Biomass observation 2.1. Observation time 2.1.1 Station of the crop land: The observations lasted from 20 May 2012 to 15 September 2012, and in five-day periods for each observation before 31 July and in ten-day periods for each observation after 31 July. The observation time for the crop land are 2013-5-25, 2013-5-30, 2013-6-5, 2013-6-10, 2013-6-16, 2013-6-22, 2013-6-27, 2013-7-2, 2013-7-7, 2013-7-12, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.1.2 The station of wetland: The observations lasted from 20 May 2012 to 15 September 2012, and in ten-day periods for each observation. The observation time for the crop land are 2013-6-5, 2013-6-16, 2013-6-27, 2013-7-7, 2013-7-17, 2013-7-27, 2013-8-3, 2013-8-13, 2013-8-25, 2013-9-5 and 2013-9-15. 2.2. Method Station of the crop land: Three plots were selected and three strains of corn for each observation were random selected for each plot to measure the fresh weight (the aboveground biomass and underground biomass) and dry weight. Per unit biomass can be obtained according to the planting structure. Station of the wetland: Two plots of reed with the area of 0.5 m × 0.5 m were random selected for each observation. The reed of the two plots was cut to measure the fresh weight (the aboveground biomass) and dry weight. 2.3. Instruments Balance (accuracy 0.01 g); drying oven 3. Data storage All observation data were stored in excel. Other data including plant spacing, row spacing, seeding time, irrigation time, the time of cutting male parent and the harvest time of the corn for the station of cropland were also stored in the excel.

2019-09-15

HiWATER: Airborne CCD image data in the middle reaches of the Heihe River Basin on July. 26, 2012

On 26 July 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.2 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1 m), and a thermal image camera with a spatial resolution of 4.8 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.

2019-09-15

HiWATER: Airborne LiDAR raw data in Qilian on Aug. 28, 2012

On 28 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1.6 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Simultaneous observation dataset of land surface temperature in the lower of Heihe River Basin on Aug. 01, 2014

The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature for different kinds of underlying surface, including the lager areas of homogeneous vegetation with high coverage, water, and concrete floor, while the thermal imager go into the experimental areas of the low reaches. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal imager and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time On 1 August, 2014 2. Observation samples Three field samples were chosen in the fly zone, which were large areas of homogeneous vegetation (with high coverage), water, and concrete floor. 3. Observation method Surface temperature values were observed continuously for each sample using handheld infrared thermometers during the imager went into the flying area. 4. Instrument parameters and calibration The field of view of the handheld infrared thermometer is one degree and the emissivity was assumed to be 0.95. All instruments were calibrated on 31 July, 2014 using a black body. 5. Data storage All the observation data were stored in an excel.

2019-09-15

HiWATER: Simultaneous measurement dataset of vegetation chlorophyll content in the middle of Heihe River Basin on July. 8, 2012

The dataset includes the chlorophyll content of vegetation in different site which has different types of vegetation, acquired on 8 July, 2012, in order to validate the Chlorophyll products. Observation instruments: Sampling, Acetone extraction method Measurement methods: To analyze the influence height on chlorophyll , we select 12 different corn samples based on the height of corn. To compare the chlorophyll content of different types of vegetation, we also select 3 types of vegetation sample on the first EC tower, 1 beans sample near the seventeenth EC tower and 3 reed samples on wetland. A total of selected 19 different samples are analyzed in the laboratory in the College of Life Science, Hexi. We extract chlorophyll a, chlorophyll b, the content of total chlorophyll of selected samples. Dataset contents: Chlorophyll a, chlorophyll b, the content of total chlorophyll Measurement time: 8 July, 2012

2019-09-14

HiWATER: Airborne LiDAR raw data in Hulugou catchment

On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-14

HiWATER: Dataset of airborne microwave radiometers (L bands) mission in the middle of Heihe River Basin on Jul. 26, 2012

The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 26 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:10 am (UTC+8) from Zhangye airport and landed at 13:40 pm, with the flight time of 4.5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.

2019-09-14