This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month
2020-07-28
The distribution map of irrigation area and main and branch canals in Heihe River basin includes the main irrigation area and the distribution of all main and branch canals in Heihe River Basin. The irrigation area mainly includes Luocheng irrigation area, Youlian irrigation area, Liuba irrigation area, Pingchuan irrigation area, liaoquan irrigation area, Liyuan River irrigation area, yannuan irrigation area, Banqiao irrigation area, Shahe irrigation area, Xijun irrigation area, Yingke irrigation area, Daman irrigation area, Maying River irrigation area, shangsan irrigation area, Xinba irrigation area and Hongyazi irrigation area. The distribution map of main and branch canals includes all the main canals and branch canals of these 16 irrigation areas.
2020-07-28
Zhangye basin mainly includes 20 irrigation areas. Under the restriction of water diversion, the surface water consumption of the irrigation area is under control, but the groundwater exploitation is increased, resulting in the groundwater level drop in the middle reaches, resulting in potential ecological environment risks. Due to the complex and frequent exchange of surface water and groundwater in the study area, it is possible to realize the overall water resource saving by optimizing the utilization ratio of surface water and groundwater in each irrigation area. In this project, on the premise of not changing the water demand of the middle reaches irrigation area, the two problems of maximizing the outflow of Zhengyi Gorge (given groundwater reserve constraint) and maximizing the outflow of Zhengyi Gorge (given groundwater reserve constraint) are studied.
2020-06-11
一. data description The data included the precipitation, river water and groundwater in the small calabash valley from July to September 2015 2H, 18O, with a sampling frequency of 2 weeks/time. 二. Sampling location (1) the precipitation sampling point is located in the ecological hydrology station of the institute of cold and dry regions, Chinese academy of sciences, with the latitude and longitude of 99 ° 53 '06.66 "E, 38 ° 16' 18.35" N. (2) the sampling point of the river is located at the outlet flow weir of haugugou small watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N.The water sampling point number 2 position for heihe river upstream hoist ditch Ⅱ area exports, latitude and longitude 99 ° 52 '58.40 "E, 38 ° 14' 36.85" N. (3) underground water spring and well water sampling points.The sampling point of spring water is located at 20m to the east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E, 38°16' 11.44" N. The well water sampling point is located near the intersection of east and west branches, with the latitude and longitude of 99 ° 52 '45.38 "E, 38 ° 15' 21.27" N. 三. Test method The δ2H and δ18O values of the samples were measured by PICARRO L2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by the test accuracy value of v-smow relative to the international standard substance, and the measurement accuracy was 0.038‰ and 0.011‰, respectively.
2020-06-07
1、 Data Description: the data includes the samples of anions and anions of river water and groundwater in hulugou small watershed from July to September 2015 for test and analysis. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the cation of sample is tested by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is tested by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.
2020-06-07
1、 Data Description: data includes doc and DIC values of river water and groundwater in hulugou small watershed from July to September 2015. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. The first sampling point is located at the hydrological section at the outlet of hulugou Small Watershed at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points. The spring sampling point is located at 20 m to the east of the drainage basin outlet, with the longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: Doc and DIC values of samples were measured by oiaurora 1030w TOC instrument, detection range: 2ppb c-30000ppm C.
2020-06-07
I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. Based on the vector map of the 14 million rivers in China as a base map, the upper reaches of the Yellow River basin were cut out. The vector map of the river is a key element for extracting the boundary of the basin by using the topographic map, and it is also a key element for flood evolution and sediment evolution. Ⅱ. Data processing description Using the national vector map of the 14 million rivers as the data source, it is cut out by using the boundary of the upper reaches of the Yellow River. Ⅲ. Data content description The map is stored in ArcGIS, .shp files, including vector diagrams of the main and tributaries from the source area of the Yellow River to Toudaoguai. Ⅳ. Data usage description The vector map of the river is a key element for extracting the boundary of the watershed by using the topographic map, and it is also a key element for flood evolution and sediment evolution.
2020-06-01
The dataset is the distribution map of lakes in Qinghai Lake Basin. The projection is latitude and longitude. The data includes the spatial distribution data and attribute data of the lake. The attribute fields of the lake are: NAME (lake name), CODE (lake code).
2020-04-04
The data set includes the observation data of river water level and velocity at No. 4 point in the dense observation of runoff in the middle reaches of Heihe River from January 1 to June 25, 2014. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 03'53.23 ", E100 ° 25'59.31", with an altitude of 1431m and a width of 58m. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to June 25, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.
2020-03-14
The data set includes the river level observation data of point 2 in the dense runoff observation of the middle reaches of Heihe River from January 1, 2015 to December 31, 2015. The observation point is located in Heihe bridge, 312 National Road, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n38.996667 °, e100.427222 °, altitude 1485m, river width 70m and 20m. Sr50 ultrasonic range finder is used for water level observation, with acquisition frequency of 30 minutes. The data includes the following parts: Water level observation, observation frequency 30 minutes, unit (CM); In 2015, the section of bridge no.2-312 was frequently disturbed by human beings. The dam was built within 1km of the upstream and downstream of the section. The unstable area of the hydrological section led to the disorder of the water level and flow curve. During the measurement, the stable flow and water level curve could not be obtained. The observation of water level is based on the manual observation of water level at 0:00 on January 1, 2015. In the later stage, the hydrological section of river undercut changes. The result is that the datum water level changes and negative value appears; Refer to Li et al. (2013) for hydrometeorological network or station information, and he et al. (2016) for observation data processing
2020-03-14
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn