Current Browsing: Surface Water


Glacier melt runoff data of the Qinghai Tibet Plateau (2019-2021)

Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.

2022-04-18

In-situ water quality parameters of the lakes on the Tibetan Plateau (2009-2020)

This dataset provides the in-situ lake water parameters of 124 closed lakes with a total lake area of 24,570 km2, occupying 53% of the total lake area of the TP.These in-situ water quality parameters include water temperature, salinity, pH,chlorophyll-a concentration, blue-green algae (BGA) concentration, turbidity, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), and water clarity of Secchi Depth (SD).

2022-04-18

Spatial distribution of measured salinity of lakes on TP

Lake salinity is an important parameter of lake water environment, an important embodiment of water resources, and an important part of climate change research. This data is based on the measured salinity data of lakes in the Qinghai Tibet Plateau. The salinity is characterized by the practical salinity unit (PSU), which is converted from the specific conductivity (SPC) measured by the conductivity sensor. ArcGIS software was used to convert the measured data into space vector format. SHP format, and the measured salinity spatial distribution data file was obtained. The data can be used as the basic data of lake environment, hydrology, water ecology, water resources and other related research reference.

2022-04-18

Hydrological data set of surface process and environment observation network in alpine region of China (2019)

Based on the long-term observation data of the field stations in the alpine network and the overseas stations in the pan third polar region, a series of data sets of meteorological, hydrological and ecological elements in the pan third polar region are established; through the intensive observation and sample plot and sample point verification in key areas, the inversion of meteorological elements, lake water and water quality, aboveground vegetation biomass, glacier and frozen soil change and other data products are completed; based on the Internet of things, the data products are retrieved Network technology, research and establish meteorological, hydrological, ecological data management platform of multi station networking, to achieve real-time data acquisition and remote control and sharing. The hydrological data set of the surface process and environment observation network in China's alpine regions in 2019 mainly collects the measured hydrological (runoff, water level, water temperature, etc.) data at six stations, including Southeast Tibet station, Zhufeng station, Yulong Snow Mountain station, Namco station, Ali station and Tianshan station. Southeast Tibet station: flow data, including 4 times of using M9 to measure flow in 2019, including average velocity, flow and maximum water depth; relative water level data is measured by hobo pressure water level meter, including daily average relative water level and water temperature data in 2019. Namco station: discharge data, including the data measured by domestic ls-1206b hand-held current meter for 4 times in 2019, including river width and flow data. The water level data is measured by hobo pressure water level meter, including the water pressure, water temperature and electricity of the original 1 hour in 2019. The relative water level can be calculated by water pressure; Everest station: rongbuhe river discharge, including river width and discharge data measured by domestic ls-1206b hand-held current meter 13 times from June to September 2019; Ali station: flow data: including 22 times of irregular measurement data by river anchor M9 in 2019, and relative water level data measured by hobo pressure water level meter, including hourly water level and water temperature data of the whole year in 2019; Tianshan station: water level data: including daily average water level of 3 points in 2019 Yulong Xueshan station: including mujiaqiao flow data from January to October in 2019

2022-04-18

Hydrological data of Kafinigan hydrological station in Amu Darya River Basin,Central Asia (2020)

This data is from the hydrological station of kafinigan River, a tributary of the upper Amu Darya River. The station is jointly built by Urumqi Institute of desert meteorology of China Meteorological Administration, Institute of water energy and ecology of Tajik National Academy of Sciences and Tajik hydrometeorological Bureau. The data can be used for scientific research such as water resources assessment and water conservancy projects in Central Asia. Data period: November 3, 2019 to December 3, 2020. Data elements: Hourly velocity (M / s), hourly water level (m) and hourly rainfall (m). Site location: 37 ° 36 ′ 01 ″ n, 68 ° 08 ′ 01 ″ e, 420m 1、 300w-qx River velocity and water level observation instrument (1) Flow rate parameters: 1 power supply voltage 12 (9 ~ 27) V (DC) The working current is 120 (110 ~ 135) MA 3 working temperature (- 40 ~ 85) ℃ 4 measurement range (0.15 ~ 20) m / S The measurement accuracy is ± 0.02m/s The resolution is less than 1 mm The detection range is less than 0.1 ~ 50 m 8 installation height 0.15 ~ 25 m 9 sampling frequency < 20sps (2) Water level parameters: 1 measuring range: 0.5 ~ 20 m The measurement accuracy is ± 3 mm The resolution is less than 1 mm The repeatability was ± 1 mm 2、 SL3-1 tipping bucket rain sensor 1. Water bearing diameter Φ 200mm 2. The measured precipitation intensity is less than 4mm / min 3. Minimum precipitation of 0.1 mm 4. The maximum allowable error is ± 4% mm 3、 Flow velocity, frequency of data acquisition of the observation instrument: the sensor measures the flow velocity and water level data every 5S 4、 Calculation of hourly average velocity: the hourly average velocity and water level data are obtained from the average of all the velocity and water level data measured every 5S within one hour 5、 Description of a large number of values of 0 in water level data: the value of 0 in water level data is caused by power failure and restart of sensor due to insufficient power supply. The first data of initial start-up is 0, resulting in the hourly average value of 0. After the power supply transformation on July 26, 2020, the data returned to normal. At the end of September 2020, the power supply began to be insufficient. After the secondary power supply transformation on December 25, 2020, the data returned to normal 6、 Description of water level monitoring (such as line 7358, 2020 / 11 / 3, 16:00, maximum water level 6.7m, minimum water level 0m, how to explain? In addition, the maximum value of the highest water level is 6.7m, which appears many times in the data. It seems that 6.7m is the limit value of the monitoring data. Is this the case? ): 6.7m is the height from the initial sensor to the bottom of the river bed. The appearance of 6.7m is the abnormal data when the sensor is just started. The sensor is restarted due to the power failure caused by the insufficient power supply of the equipment. This abnormal value appears in the initial start-up. After the power supply transformation on December 25, 2020, the data returns to normal

2022-04-18

Phytoplankton data of lakes in Qinghai Tibet Plateau in 2020

The data is the phytoplankton data of 70 points in 26 lakes in Tibet in 2020. The sampling time is from August to September. The sampling method is the conventional phytoplankton sampling method. 1.5 liters of samples are collected, fixed by Lugo's solution, siphoned and concentrated after static precipitation, and the results are examined by inverted microscope. The data includes the density data of different phytoplankton of 77 species / genus in 10 categories, including diatom, green algae, cyanobacteria, dinoflagellate, naked algae, cryptoalgae, brown algae, brown algae and CHAROPHYTA. This data is original and unprocessed. The unit is piece / L. The data can be used to characterize the composition and abundance of phytoplankton in the open water areas of these lakes, and can also be used to calculate the diversity of phytoplankton communities in these lakes.

2022-04-15

Oxygen content in the atmosphere of the Tibetan Plateau

Based on the meteorological data of 105 meteorological stations in and around the Qinghai Tibet Plateau from 1980 to 2019, the National Meteorological Science Data Center of China Meteorological Administration (CMA) was established. By calculating the oxygen content, it is found that there is a significant linear correlation between oxygen content and altitude, y = - 0.0263x + 283.8, R2 = 0.9819. Therefore, the oxygen content distribution map can be calculated based on DEM data grid. Due to the limitation of the natural environment in the Qinghai Tibet Plateau, there are few related fixed-point observation institutions. This data can reflect the distribution of oxygen content in the Qinghai Tibet Plateau to a certain extent, and has certain reference significance for the research of human living environment in the Qinghai Tibet Plateau.

2021-01-25

30 m resolution lake ice type data set of Qinghai Tibet Plateau, Siberia and alaga river lake region, 2015-2019

Lake ice is an important parameter of Cryosphere. Its change is closely related to climate parameters such as temperature and precipitation, and can directly reflect climate change. Therefore, lake ice is an important indicator of regional climate parameter change. However, due to the poor natural environment and sparsely populated area, it is difficult to carry out large-scale field observation, The spatial resolution of 10 m and the temporal resolution of better than 30 days were used to monitor the changes of different types of lake ice, which filled in the blank of observation. The hmrf algorithm is used to classify different types of lake ice. The distribution of different types of lake ice in some lakes with an area of more than 25km2 in the three polar regions is analyzed by time series to form the lake ice type data set. The distribution of different types of lake ice in these lakes can be obtained. The data includes the sequence number of the processed lake, the year and its serial number in the time series, and vector The data set includes the algorithm used, sentinel-1 satellite data, imaging time, polar region, lake ice type and other information. Users can determine the change of different types of lake ice in time series according to the vector file.

2020-08-05

Doc, DIC and isotopic values of river water and groundwater (including spring water) in hulugou small watershed of Heihe River (July September 2014)

The data include the collection of elements and isotopes of river water and groundwater (including spring water) in hulugou small watershed of Heihe River. Sampling location: (1) There are two river water sampling points, one of which is located at the outlet weir of hulugou small watershed in the upper reaches of Heihe River, with longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point is located at the outlet of hulugou area II in the upper reaches of Heihe River, with longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) The sampling points of groundwater spring and well water are located at 20m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of East and West Branch ditches, with longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. Data Description: 1. Doc and DIC values of river water and groundwater at the outlet of hulugou small watershed from July to September 2014 were analyzed. The DOC and DIC values of the samples were tested by oiaurora 1030w TOC instrument, and the detection range was 2ppb c-30000ppm C. 2. From July to September 2014, the δ D and δ 18O values of precipitation, river water and groundwater in hulugou small watershed were measured by Picaro l2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by δ values relative to the international standard material v-smow, with the measurement accuracy of 0.038 ‰ and 0.011 ‰ respectively. 3. Doc values of river water and soil water at the outlet of hulugou small watershed from May to September 2013 were determined by analytikjena multi n / C 3100 total nitrogen and total carbon tester. 4. Doc and DIC values of river water and groundwater at the outlet of hulugou small watershed from July to September 2014 were measured by oiaurora 1030w TOC instrument, and the detection range was 2ppb c-30000ppm C.

2020-07-30

Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin

Data of industrial structure change and water use evolution trend of social and economic development in Heihe River Basin

2020-07-28