The proportion data set of daily cloudless MODIS snow cover area in babaohe river basin (2008.1.1-2014.6.1) was obtained after cloud removal processing using a cloud removal algorithm based on cubic spline function interpolation on the basis of daily cloudless MODIS snow cover product-mod10a1 (tang zhiguang, 2013). This data set adopts the projection method of UTM (horizontal axis isometric cutting cylinder), with a spatial resolution of 500m, and provides Daily Snow Albedo daily-sad results for the babao river basin.The data set is a daily file from January 1, 2008 to June 1, 2014.Each file is the snow albedo result of the day, with a value of 0-100 (%), is the ENVI standard file, and the naming rule is: mod10a1.ayyyyddd_h25v05_snow_sad_grid_2d_reproj_babaohe_nocloud.img, where YYYY represents the year, DDD stands for Julian day (001-365/366).The file can be opened directly with ENVI or ARCMAP software. The original MODIS snow cover data products processed by declouding are derived from MOD10A1 products processed by the us national snow and ice data center (NSIDC). This data set is in HDF format and USES sinusoidal projection. The attributes of the cloud-free MODIS albedo data set (2008.1.1-2014.1.1) in babaohe river basin are composed of the spatial and temporal resolution, projection information and data format of the dataset.
2020-03-29
Ⅰ. Overview The SRTM (Space Shuttle Radar Topographic Mapping Mission) was performed by NASA, the Geospatial Intelligence Agency, and German and Italian space agencies in February 2002. A total of 222 hours and 23 minutes of data collection was performed by the US space shuttle Endeavour onboard the SRTM system, and 9.8 trillion bytes of radar images were collected between 60 degrees in North America and 56 degrees in south latitude with an area of more than 119 million km2 Data, Fei changed more than 80% of the earth's surface, this data set covers the entire territory of China. It took two years to process, and finally obtained a global digital elevation model (DEM) with a plane longitude of ± 20m and an elevation longitude of ± 16m. Ⅱ. Data processing description The processing of SRTM data is done by the Ground Data Processing System (GDPS). The GDPS consists of three parts: (1) an interferometric processor, which uses the interferometric processor to convert the data into elevation maps and radar image bands; (2) a mosaic processor, which is used to compile collected global airborne data Draw a mosaic map of continental elevation data and images; (3) Verification system is responsible for checking the quality of the mosaic map and providing accuracy maps. These processors are currently installed on JPL workstations, and the next step is to install them on a set of supercomputers for the systematic processing of real SRTM data. As this work progresses, JPL will release auxiliary data to the work. Ⅲ. Data content description SRTM data provides a file for each latitude and longitude grid. There are two types of longitude: 1 arc-second and 3 arc-second. Called SRTM1 and SRTM3, or 30m and 90m data. This dataset uses SRTM3 data with 90m resolution. Each file contains elevation data of 1201 × 1201 sampling points. The data format is DEM format. The spatial position of each picture frame is shown in the attached picture (1-25 thousand pictures in the country). Ⅳ. Data usage description SRTM data has computable and visual functions, and has broad application prospects in various fields, especially in the fields of surveying and mapping, surface deformation, and military. Specifically, it mainly includes the following aspects: In scientific research, SRTM data plays a very important role in geology, geophysics, seismic research, level modeling, volcano monitoring, and registration of remote sensing images. Using high-precision digital terrain elevation data to build a three-dimensional three-dimensional model of the ground, which is superimposed on the ground image, can observe slight changes in the earth's surface. In civil and industrial applications, SRTM data can be used for civil engineering calculations, reservoir dam site selection, land use planning, etc. In terms of communications, digital terrain data can help businesses build better broadcast towers and determine the best In terms of aviation safety, the use of SRTM digital elevation data can establish an enhanced aircraft landing alarm system, which greatly improves the aircraft landing safety factor. In the military, SRTM data is the basic information platform of C4ISR (Army Automatic Command System). It is necessary to study the structure of the battlefield, the direction of the battlefield, the presetting of the battlefield, the deployment of operations, the concentration of forces in the delivery, the protection conditions, and logistics support Essential.
2020-03-29
I. overview The data set includes wind and sand activity data of Ulanbuh Desert and Kubuqi Desert along the upper Yellow River from April to May 2011 and April 2012, mainly including wind speed profile, surface roughness, wind-sand flow structure, sand transport rate data under different vegetation coverage and different parts of sand dunes. II. Data Processing Instructions The wind speed and direction are observed by 014A wind speed sensor 024A wind direction sensor and CR200 data acquisition instrument produced by MetOne company, and the sediment transport amount is observed by stepped sediment collection instrument. III. Description of Data Content The data are stored in EXCEL table, mainly including wind speed profile, surface roughness, wind-sand flow structure and sand transport rate data under different vegetation coverage. IV. Data Usage Instructions This paper evaluates the sandstorm hazards along the Yellow River, estimates the amount of sandstorm entering the Yellow River in the upper reaches of the Yellow River, and provides data support for the establishment of an early warning system for sandstorm hazards in the region.
2020-03-29
Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.
2020-03-29
Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.
2020-03-28
Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.
2020-03-28
Ⅰ. Overview This data set is based on Landsat MSS, TM and ETM Remote sensing data by means of satellite remote sensing. Using a hierarchical land cover classification system, the data divides the whole region into six first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅱ. Data processing description The data set is based on Landsat MSS, TM and ETM Remote sensing data as the base map, the data set projection is set as Alberts equal product projection, the scale is set at 1:24,000 for human-computer interactive visual interpretation, and the data set storage form is ESRI coverage format. Ⅲ. Data content description The data set adopts a hierarchical land cover classification system, which is divided into 6 first-class classifications (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class classifications. Ⅳ. Data use description The data can be mainly used in national land resources survey, climate change, hydrology and ecological research.
2020-03-28
一.An overview The 1:100,000 soil database in the upper reaches of the Yellow River was tailored from the 1:100,000 soil database in China.The 1:100,000 soil database of China is based on the 1:100,000 soil map of the People's Republic of China compiled and published by the national soil census office in 1995.The database adopts the traditional "soil genetic classification" system, and the basic mapping unit is subcategories, which are divided into 12 classes of soil, 61 classes of soil and 227 classes of soil, covering all kinds of soil and its main attribute data in China. 二. Data processing instructions The 1:1 million soil database of China was established by the soil resources and digital management innovation research team led by shi xuezheng of nanjing soil research institute, Chinese academy of sciences, after four years.The database consists of two parts: soil spatial database and soil attribute database.The establishment of the database was funded by the knowledge innovation program of the Chinese academy of sciences and completed under the leadership of liu jiyuan and zhuang dafang. 三. data content description The soil spatial database, 1:1 million digitized soil maps of the country, is based on the 1:1 million soil maps of the People's Republic of China compiled and published by the national census offices in 1995.The digitized soil map faithfully reflects the appearance of the original soil map and inherited the mapping unit when the original soil map was compiled. Most of the basic mapping units are soil genera, which are divided into 12 classes, 61 classes and 235 subclasses. It is the only and most detailed digitized soil map in China. The soil attribute database, whose attribute data is quoted from the soil species record of China, is divided into six volumes, and nearly 2,540 soil species are collected.Soil property data can be divided into soil physical properties, soil chemical properties and soil nutrients.Soil physical properties soil particle composition and soil texture, soil chemical properties such as PH value, organic matter, soil nutrients include all N, all P, all K and effective P and effective K. 四. Data usage instructions Soil types and soil properties are an important content in the study of physical geography. With the help of 1:100,000 soil database in the upper reaches of the Yellow River, the type, quantity and spatial distribution of soil resources in the upper reaches of the Yellow River as well as the soil environment and characteristics can be understood and analyzed.This data set is of great significance for the early warning of large-scale soil erosion and the prediction of natural disasters in the upper reaches of the Yellow River.
2020-03-28
This data comes from "China's 1:100000 land use data". China's 1:100000 land use data is constructed in three years based on LANDSAT MSS, TM and ETM Remote sensing data by means of satellite remote sensing, organized by 19 research institutes affiliated to the Chinese Academy of Sciences under the national macro survey and dynamic research on remote sensing of resources and environment, a major application project of the eighth five year plan of the Chinese Academy of Sciences. Using a hierarchical land cover classification system, this data divides the whole country into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class categories. This is the most accurate land use data product in China, which has played an important role in the national land resource survey, hydrological and ecological research.
2020-03-26
This data is from "China 1:100,000 land use data".China 1:100,000 land use data was constructed in three years based on Landsat MSS, TM and ETM remote sensing data by using satellite remote sensing as a means to organize remote sensing science and technology teams from 19 institutes affiliated to the Chinese academy of sciences (cas) in the "eighth five-year plan" major application project "national macro survey and dynamic research on remote sensing of resources and environment".The land use data of guizhou province adopts a hierarchical land cover classification system, which divides the country into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 secondary categories.It is the most accurate land use data product in China and has played an important role in national land resource survey, hydrological and ecological research.
2020-03-17
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn