Based on the "western data center", the daily discharge from three field observation stations (zamashk, Yingluoxia, Qilian) since 1990-1995 is sorted out.
2020-06-05
I. Overview This data set contains daily meteorological data from the Inner Mongolia section of the Yellow River from Wuhai to Dalat Banner from 1952 to 2006. Non-standard station data includes two elements, namely: temperature and precipitation. Ⅱ. Data processing description The data is stored as integers, the temperature unit is (0.1 ° C) value, the precipitation unit is (0.1 mm), and it is stored as an ASCII text file. Ⅲ. Data content description Standard station data, temperature and precipitation are stored separately, which are temperature file and precipitation file. Ⅳ. Data usage description In terms of resources and environment, meteorological data is used to simulate the regional climate change and runoff, sediment, water and soil loss and vegetation changes in the basin, and is also a necessary input condition for remote sensing inversion.
2020-06-05
1. The data set is the soil water content data set of the upper reaches of Heihe River Basin, and the data is the measured data of location points from 2013 to 2014. 2. The infiltration data is measured with ech2o. Including 5 layers of soil moisture content and soil temperature 3. Some instruments lack of data due to insufficient battery life, broken roads, stolen instruments and other reasons
2020-06-03
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
2020-06-01
I. Overview The Yellow River is the second longest river in our country. The problem of the Yellow River's sediment has attracted the attention of people all over the world. Based on the vector map of the 14 million rivers in China as a base map, the upper reaches of the Yellow River basin were cut out. The vector map of the river is a key element for extracting the boundary of the basin by using the topographic map, and it is also a key element for flood evolution and sediment evolution. Ⅱ. Data processing description Using the national vector map of the 14 million rivers as the data source, it is cut out by using the boundary of the upper reaches of the Yellow River. Ⅲ. Data content description The map is stored in ArcGIS, .shp files, including vector diagrams of the main and tributaries from the source area of the Yellow River to Toudaoguai. Ⅳ. Data usage description The vector map of the river is a key element for extracting the boundary of the watershed by using the topographic map, and it is also a key element for flood evolution and sediment evolution.
2020-06-01
According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil clay content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_clay_layer1.tif: 0-5cm soil clay content; hh_clay_layer2.tif: 5-15cm soil clay content; hh_clay_layer3.tif: 15-30cm soil clay content; hh_clay_layer4.tif: 30-60cm soil clay content; hh_clay_layer5.tif: 60-100cm soil clay content;
2020-06-01
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
2020-06-01
The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.
2020-05-25
The compilation basis of frozen soil map includes: (1) frozen soil field survey, exploration and measurement data; (2) aerial photo and satellite image interpretation; (3) topo300 1km resolution ground elevation data; (4) temperature and ground temperature data. Among them, the distribution of permafrost in the Qinghai Tibet Plateau adopts the research results of nanzhuo Tong et al. (2002). Using the measured annual average ground temperature data of 76 boreholes along the Qinghai Tibet highway, regression statistical analysis is carried out to obtain the relationship between the annual average ground temperature and latitude, elevation, and based on this relationship, combined with the gtopo30 elevation data (developed under the leadership of the center for earth resources observation and science and technology, USGS) Global 1 km DEM data) to simulate the annual mean ground temperature distribution over the whole Tibetan Plateau. Taking the annual average ground temperature of 0.5 ℃ as the boundary between permafrost and seasonal permafrost, the boundary between discontinuous Permafrost on the plateau and island Permafrost on the plateau is delimited by referring to the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988); in addition, the division map of Permafrost on the big and small Xing'an Mountains in the Northeast (Guo Dongxin et al., 1981), the distribution map of permafrost and underground ice around the Arctic (b According to rown et al. 1997) and the latest field survey data, the Permafrost Boundary in Northeast China has been revised; the Permafrost Boundary in Northwest mountains mostly uses the boundary defined in the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988). According to the data, the area of permafrost in China is about 1.75 × 106km2, accounting for about 18.25% of China's territory. Among them, alpine permafrost is 0.29 × 106km2, accounting for about 3.03% of China's territory. For more information, please refer to the specification of "1:4 million map of glacial and frozen deserts in China" (Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences, 2006)
2020-04-01
This data was derived from "1: 100,000 Land Use Data of China". Based on Landsat MSS, TM and ETM remote sensing data, 1: 100,000 Land Use Data of China was compiled within three years by a remote sensing scientific and technological team of 19 research institutes affiliated to the Chinese Academy of Sciences, which was organized by the “Remote Sensing Macroinvestigation and Dynamic Research on the National Resources and Environment", one of the major application programs in Chinese Academy of Sciences during the "Eighth Five-year Plan". This data adopts a hierarchical land cover classification system, which divides the country into 6 first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 31 second-class categories. This is the most accurate land use data product in our country at present. It has already played an important role in national land resources survey, hydrology and ecological research.
2020-04-01
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn