Current Browsing: Soil


HiWATER: Dataset of soil parameters in the midstream of the Heihe River Basin (2012)

This data was measured in middle stream of the Heihe River Basin in year 2012. Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter were measured for each layer of the soil profile which is very close to the AMS sites. This data can be used in land surface model and ecological model. Soil profile position: The coordinate of the profile is listed as follow. No.1 to No.17 is corresponding to the AMS number in the Matrix. No. x y 1 100.3582 38.89322 2 100.3541 38.88697 3 100.3763 38.89057 5 100.3506 38.87577 6 100.3597 38.8712 7 100.3652 38.87677 8 100.3765 38.87255 9 100.3855 38.87241 10 100.3957 38.87569 11 100.342 38.86994 12 100.3663 38.86516 13 100.3785 38.86077 14 100.3531 38.85869 16 100.3641 38.8493 17 100.3697 38.84512 15 (superstation) 100.3721 38.85547 Gebi 100.3058 38.91801 Huazhaizi 100.3189 38.7652 Shenshawo 100.4926 38.78794 Instruments: Soil texture: Microtrac laser particle analyzer Porosity: Ring sampler law Bulk density: Ring sampler law Saturated Water Conductivity: hydrostatic head method Soil organic matter: Total organic carbon analyzer (TOC-VCPH) Measuring time: 2012-5-20 to 2012-7-10 (UTC+8). Measuring content: Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter.

2019-09-15

HiWATER: BNUNET soil moisture and LST observation dataset in the midstream of the Heihe River Basin (2012)

This dataset includes soil moisture and soil temperature observations of 75 BNUNET nodes during the period from May to September 2012 (UTC+8), which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The BNUNET located in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area. Each BNUNET node observes the soil temperature at 4 cm, 10 cm and 20 cm depth, and soil moisture at 4 cm depth with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "Data introduction.docx".

2019-09-15

WATER: Dataset of soil moisture observations in the Linze station foci experimental area from May to Jun, 2008

The dataset of soil moisture observations was obtained by the cutting ring (50cm^3) and ML2X Soil Moisture Tachometer in the Linze station foci experimental area. Surface soil (0-5cm) was measured 2-3 times in 40 subplots of the west-east desert strip on May 24, 25, 28, Jun. 27 and Jul. 11, 2008, 2-4 times in 9 subplots of north-south strip on May 24, 25, 28, Jun. 27 and Jul. 11, 17 times from P1 to P6 strips on Jul. 4 and 8, nine times along LY06 strip on Jun. 6, 15, 29 and Jul. 11, LY07 strip on May 30, Jun. 6, 10, 15, 29 and Jul. 11 and LY08 strip on May 30, Jun. 6 and 10, and once by the cutting ring and three times by ML2X Soil Moisture Tachometer in Wulidun farmland quadrates on May 24, 25, 28, Jun. 29 and Jul. 11. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

2019-09-15

HiWATER: Simultaneous observation dataset of land surface temperature in the lower of Heihe River Basin on Aug. 01, 2014

The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature for different kinds of underlying surface, including the lager areas of homogeneous vegetation with high coverage, water, and concrete floor, while the thermal imager go into the experimental areas of the low reaches. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal imager and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time On 1 August, 2014 2. Observation samples Three field samples were chosen in the fly zone, which were large areas of homogeneous vegetation (with high coverage), water, and concrete floor. 3. Observation method Surface temperature values were observed continuously for each sample using handheld infrared thermometers during the imager went into the flying area. 4. Instrument parameters and calibration The field of view of the handheld infrared thermometer is one degree and the emissivity was assumed to be 0.95. All instruments were calibrated on 31 July, 2014 using a black body. 5. Data storage All the observation data were stored in an excel.

2019-09-15

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on July 10, 2012

On July 10, 2012, the airborne flight and ground observation was synchronously carried out in the PLMR quadrat of Yingke Oasis and the Huazhaizi Desert. PLMR (Polarimetric L-band Multibeam Radiometer) is a dual-polarized (H/V) L-band microwave radiometer with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, and a resolution of 1 km (relative flight height of 3 km).The radiometer has 6 beams to observe synchronously, and the incident angles are ±7º,±21.5º,±38.5º, and the sensitivity is less than 1K. The flight observation mainly covers the artificial oasis eco-hydrological test area in the middle reaches. This ground-synchronized data set provides a basic ground dataset for developing and validating passive microwave remote sensing inversion soil moisture algorithms. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern margin of Zhangye Oasis and Anyang beach desert, the west side of Zhang (Zhangye)-Da (Daman) highway. It is divided into two parts by the main canal of the Dragon Canal from North to South. The Southwest area is a desert quadrat with the size of 1 km×1 km. The desert is relatively homogeneous, so soil moisture of 5 points in the 1 km quadrat are collected (1 point of each corner and the center point, in the actual measurement process, several extra points can be measured along the road). The four corner points are 600 meters away from each other,except the diagonal direction. And the southwest corner point is Huazhaizi Desert Station, for the convenience of comparison with weather station data. On the northeast side, a large size quadrat of 6 km×1.6 km is selected for simultaneous observation of the oasis underlying surface.In order to obtain the brightness temperature comparison with the PLMR observation, the quadrat was chose based on the following factors :surface coverage representative, avoiding the residential and greenhouses, crossing the oasis farmland and part of the Southern desert, accessibility, and observation time(road consumption). Taking the resolution of PLMR observations into consideration, in the synchronous observation, 11 sampling lines (East-West distribution) were collected with an interval of 160 meters from the East to the West. Each line from the North to the South was separated by 21 points with an interval of 80 meters. And 4 Hydraprobe Data Acquisition System (HDAS, Reference 2) were used to measure simultaneously. Measurement contents: About 230 points of the quadrat were collected, 2 observations were performed on each point, that is, 2 observations were performed on each sampling point of the film mulched corn field, 1 inside the film (marked as a in the data record), 1 outside the film (marked as b in the data record). Since the HDAS system useed the POGO portable soil sensor, the soil temperature, soil moisture (volumetric water content), loss tangent, soil electrical conductivity, soil complex dielectric real part and imaginary part were obtained by observation. No special simultaneous sampling of vegetation was carried out on the same day. Data: The data set includes two parts: soil moisture observation and vegetation observation. The former saves the data as a vector file, the spatial position is the position of each sampling point (WGS84+UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.

2019-09-14

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (cosmic-ray soil moisture)

This dataset includes the observational data that were collected by two sets of Cosmic-ray Soil Moisture Observation System (COSMOS), named crs_a and crs_b, which were installed near the Daman Superstation in the flux observation matrix from 1 June through 20 September 2012. The land cover in the footprint was maize crop, and the site was located with the cropland of the Daman Irrigation District, Zhangye, Gansu Province. Crs_a was located at 100.36975° E, 38.85385° N and 1557.16 m above sea level; Crs_b was located at 100.37225° E, 38.85557° N and 1557.16 m above sea level. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) then neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual. The procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012). 3) Calibration After the quality control and corrections were applied, soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 must be calibrated using the in situ observed soil moisture within the footprint. This procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012) 4) Computing the soil moisture Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. This procedure was previously described by Jiao et al, (2013) and Zreda et al. (2012) For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Zhu et al. (2015) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of Soil respiration observed by Li-8100 in the lower of Heihe River Basin from Jul to Aug , 2014

Soil respiration observation was carried out for the typical vegetation ground in the lower reaches of the Heihe River Basin during the aviation flight experiment in 2014. The observation started on 23 July, 2014 and finished on 2 August, 2014. 1. Observation time Days from 23 July to 2 August, 2014 (25 July, 2014 excepted) 2. Samples and observation methods Large areas with relatively homogeneous vegetation (greater than 100 m * 100 m) were chosen as the observation samples. And combined the flux tower sites distribution of the lower reaches, five field samples closed to the sites were selected The observation sites sampled including Populus and Tamarix mixed forest, Populus, Tamarix group, bare ground and melon quadrats. 3-5 plots were observed for each samples. The PVC soil rings were installed one day before observation and kept about 5 cm out of the ground (the inner diameter of the PVC is 19.5 cm, the outer diameter is 20.0 cm, and the height is 12.0 cm). Minimal the effects to the surface of vegetation and withered matter when install the rings. In order to avoid fluctuations of the soil respiration value by the PVC rings, soil respiration rate was obtained when it returned to its original state (about 24h after the rings install). The observation time for each day was from 8:00 to 12:00 when soil respiration is relatively stable and can represent the whole day in this time. The Li-8100 Open Path soil carbon flux automatic analyzer was used (Model 8100-103) once for each plot. Cycles of observation for all plots of the five samples were completed for every morning. The soil respiration values of the samples were obtain by averaging the values of plots of the samples. 3. Observation instrument Li 8100 4. Data storage The observation recorded data were stored in excel and the original Soil respiration data were stored in 81x files.

2019-09-14

The meteorological data of Mt. Qomolangma, Namco, and Linzhi Stations on the Tibetan Plateau (2006-2008)

The data set collects the long-term monitoring data on atmosphere, hydrology and soil from the Integrated Observation and Research Station of Multisphere in Namco, the Integrated Observation and Research Station of Atmosphere and Environment in Mt. Qomolangma, and the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data have three resolutions, which include 0.1 seconds, 10 minutes, 30 minutes, and 24 hours. The temperature, humidity and pressure sensors used in the field atmospheric boundary layer tower (PBL) were provided by Vaisala of Finland. The wind speed and direction sensor was provided by MetOne of the United States. The radiation sensor was provided by APPLEY of the United States and EKO of Japan. Gas analysis instrument was provided by Licor of the United States, and the soil moisture content, ultrasonic anemometer and data collector were provided by CAMPBELL of the United States. The observing system is maintained by professionals on a regular basis (2-3 times a year), the sensors are calibrated and replaced, and the collected data are downloaded and reorganized to meet the meteorological observation specifications of the National Weather Service and the World Meteorological Organization (WMO). The data set was processed by forming a time continuous sequence after the raw data were quality-controlled, and the quality control included eliminating the systematic error caused by missing data and sensor failure.

2019-09-14

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the upper reaches of the Heihe River Basin on August 1, 2012

The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in upper reaches of the Heihe River Basin on 1 August, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted along two transects respectively located at the west and east branches of the Babaohe River and two sampling plots in the A’rou foci experimental area. Along the transects, soil moisture was sampled at every 50 m in the west-east direction. In order to keep the ground measurements following the airborne mission as synchronous as possible in temporal, measurements were made discontinuously. In the A’rou foci experimental area, two sampling plots were identified with areas of 1.5 km × 0.6 km and 0.85 km × 0.6 km. In each plot, soil moisture was sampled at every 50 m in the west-east direction and 100 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. Concurrently with soil moisture sampling, vegetation properties were measured at some typical sampling plots. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

2019-09-14

HiWATER: Dataset of the Portable Soil Respiration in the middle reaches of the Heihe River Basin (2012)

During the 2012 aerial remote sensing experiment conducted midstream, Li-Cor8100 was used to measure soil respiration every five days in the EC matrix area. Instrument: LI-Cor8100 Measuring Method: Soil respiration ring was made using PVC pipe with length of 10 cm. Before measuring soil respiration, soil respiration ring was inserted into the soil, 4 cm in soil and 6 cm above soil. Soil respiration measurement should be taken after standing for at least 24 hours science ring was inserted in soil. Sample measurement time is during 9-12 in the morning. Set of three replicates per plot. Marked according to EC site name. Data content: Data content includes header information, and once every five days repeated three times observations value and the average value. Measuring location: EC sites within the matrix core experiment area (No. EC01 to EC17), each plot set three repeat samples. For the superstation (EC15) plot set nine repeat samples. Measuring time: From 6 June to 20 August, 2012, once every five days for site EC01, EC03, EC05, EC10, EC11, EC12, EC13, EC14, and EC17; from 1 July to 20 August, 2012, once every five days for site EC02, EC04, EC06, EC07, EC08, EC09 and EC16. The time used in this dataset is in UTC+8 Time. Part of the observation points during the observation just irrigation, these times are not observable.

2019-09-13