The No. 1 hydrological section is located at 213 Heihe River Bridge (100.345° E, 38.912° N, 1546 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.1 hydrological section from 13 June, 2012, to 6 September, 2013. This section consists of two river sections, i.e., the east section,which is denoted as No. 1 and the west section, which is denoted as No. 2. The width of this section is 330 meters and consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
2019-09-14
This dataset contains the flux measurements from site No.11 eddy covariance system (EC) in the flux observation matrix from May 29 to September 18, 2012. The site (100.34197° E, 38.86991° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1575.65 m. The EC was installed at a height of 3.5 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-14
This dataset contains the automatic weather station (AWS) measurements from site No.5 in the flux observation matrix from 4 June to 18 September, 2012. The site (100.35068° E, 38.87574° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1567.65 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45C; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (010C/020C; 10 m, towards north), a four-component radiometer (CNR1; 4 m, towards south), two infrared temperature sensors (SI-111; 4 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-14
A land surface temperature and upward/downward shortwave radiation observation system was set up on the roof, which locate on the edge of No.4 eddy covariance system (EC4) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous adobe roof in Shiqiao Village, Xiaoman Town, Zhangye City. Land surface of observation site is relatively flat and uniform, and also not tall trees around. It’s about 20 meters away from southwest No.4 eddy covariance system (EC4) observation points. The coordinates of this site: 38°52′38.50″ N,100°21′27.00″ E。 Observation Instrument: Observation system is composed of a SI-111 infrared radiometer (Campbell, USA) installed vertically downward, two CMP3 pyranometer (Kipp&Zonen, Netherlands) one upward, another downward. Observation height is 1.0 m, data logging by a Campbell CR850 logger. Sensor orientation: Observation mounting arm has 3 m long, parallel to roof edge, azimuth angle: 156° (East by south 66°) Observation Time: This site operates from 23 June, 2012 to 20 September, 2012. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface (adobe roof) temperature, downward/upward total solar radiation, surface albedo. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Rs_downwell, downward shortwave radiation (W/m^2); Rs_upwell, upward (reflect) shortwave radiation (W/m^2); albedo, calculate by Rs_upwell/ Rs_downwell. SBT_C, body temperature of SI-111 sensor (℃); Target_C, Target of surface temperature (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
2019-09-14
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Daman Superstation between 22 September, 2012, and 31 December, 2013. The site (100.4464° E, 38.9751° N) was located on a wetland (reed surface) in Zhangye National Wetland Park, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 and 10 m, north), wind speed profile (03002; 5 and 10 m, north), wind direction profile (03002; 10 m, north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2 and -0.4 m), and four photosynthetically active radiation (PQS-1; install on 28 July, 2013, two above the plants, 6 m, south, one vertically downward and one vertically upward; two below the plants, 0.25 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m; RH_5 m and RH_10 m) (℃ and %, respectively), wind speed (Ws_5 m and Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm and Ts_40 cm) (℃), on the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data were missing during 10 May, 2013 and 30 May, 2013 because of datalogger malfunction; the wind speed data were missing during 1 September, 2013 and 5 September, 2013 because of sensor malfunction. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
2019-09-14
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 30 June, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:10 pm (UTC+8) from Zhangye airport and landed at 18:40 pm, with the flight time of 5.5 hours. The flight was performed in the altitude of about 2500 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 750 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-13
The No. 4 hydrological section is located at Wujin Heihe River Bridge (100.433° E, 39.065° N, 1431 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains recorded by the No.4 hydrological section from 10 June, 2012 to 10 August, 2012, and from 6 September, 2013 to 31 December, 2013. The width of this section is 58 meters and the cross-sectional area is unstable because of human factors. The water level was measured using an HOBO pressure range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
2019-09-13
During the 2012 aerial remote sensing experiment conducted midstream, Li-Cor8100 was used to measure soil respiration every five days in the EC matrix area. Instrument: LI-Cor8100 Measuring Method: Soil respiration ring was made using PVC pipe with length of 10 cm. Before measuring soil respiration, soil respiration ring was inserted into the soil, 4 cm in soil and 6 cm above soil. Soil respiration measurement should be taken after standing for at least 24 hours science ring was inserted in soil. Sample measurement time is during 9-12 in the morning. Set of three replicates per plot. Marked according to EC site name. Data content: Data content includes header information, and once every five days repeated three times observations value and the average value. Measuring location: EC sites within the matrix core experiment area (No. EC01 to EC17), each plot set three repeat samples. For the superstation (EC15) plot set nine repeat samples. Measuring time: From 6 June to 20 August, 2012, once every five days for site EC01, EC03, EC05, EC10, EC11, EC12, EC13, EC14, and EC17; from 1 July to 20 August, 2012, once every five days for site EC02, EC04, EC06, EC07, EC08, EC09 and EC16. The time used in this dataset is in UTC+8 Time. Part of the observation points during the observation just irrigation, these times are not observable.
2019-09-13
This dataset is the LAI observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 20 September 2012 (UTC+8). Measurement instruments: LAI-2000 (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: To measure the incoming sky radiation on the canopy firstly. Then the transmission sky radiation are mearued under the canopy for serveral times. The canopy LAI is retrieved by using the gap probability model.
2019-09-13
The first dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 4 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The second dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 15 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The third dataset of ground truth measurements synchronizing with TerraSAR-X was obtained in the Daman foci experimental area on 26 June, 2012. The satellite image was in StripMap mode and HH/VV polarization with an incidence angle of 22-24°, and the overpass time was approximately at 19:00 UTC+8. The measurements were conducted at a sampling plot southeast to the Daman Superstation with an area of around 100 m × 100 m, which was dominantly planted with maize. Steven Hydro probes were used to collect soil moisture and other measurements with an interval of 5 m. For each sampling point, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within this sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, LAI, vegetation water content, canopy height, row distance and leaf chlorophyll content. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.
2019-09-13
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn