Observation of water and heat flux in alpine meadow ecosystem——an observation system of Meteorological elements gradient of A’rou Superstation, 2015-2017

Observation of water and heat flux in alpine meadow ecosystem——an observation system of Meteorological elements gradient of A’rou Superstation, 2015-2017


The data set contains the data of the meteorological element gradient observation system of the upper reaches of the heihe hydrological and meteorological observation network's arou super station on January 1, 2015 and December 31, 2017.Site is located in qilian county, qinghai province, arou township grass daban village, the underlying surface is alpine grassland.The longitude and latitude of the observation point are 100.4643E,38.0473N, and the altitude is 3033m.The air temperature, relative humidity and wind speed sensors are installed at 1m, 2m, 5m, 10m, 15m and 25m, respectively. There are 6 floors in total, facing due north.Wind direction sensor is mounted at 10m, facing due north;The barometer is installed at 2m;The tilting rain gauge is installed on the 40m observation tower of the super station in aru.The four-component radiometer is installed at 5m, facing due south;Two infrared thermometers are mounted at 5m, facing due south, with the probe facing down vertically;The photosynthetic effective radiometer was installed at 5m, facing south, and the probe direction was vertical upward.Part of the soil sensor is buried 2m away from the south of the tower, and the soil heat flow plate (self-calibration) (3 pieces) are all buried 6cm underground.Mean soil temperature sensor (tcavr) was buried 2cm and 4cm underground.The soil temperature probe is buried at the surface 0cm and underground 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm. There are three duplicates in the two layers of 4cm and 10cm.The soil moisture sensor was buried in the ground at 2cm, 4cm, 6cm, 10cm, 15cm, 20cm, 30cm, 40cm, 60cm, 80cm, 120cm, 160cm, 200cm, 240cm, 280cm and 320cm respectively, and there were three replications in the two layers of 4cm and 10cm.

Observation items include: wind speed (WS_1m, WS_2m, WS_5m, WS_10m, WS_15m, WS_25m) (unit: m/s), wind direction (WD_10m) (unit: degrees), air temperature and humidity (Ta_1m, Ta_2m, Ta_5m, Ta_10m, Ta_15m, Ta_25m and RH_1m, RH_2m, RH_5m, RH_10m, RH_5m) (unit: Celsius, percentage), air pressure (Press) (unit:Hundred mpa), precipitation (Rain) (unit: mm), the radiation of four component (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts per square meter), the surface radiation temperature (IRT_1, IRT_2) (unit: c), photosynthetic active radiation (PAR) (unit: second micromoles/m2), the average soil temperature (TCAV) (unit: c), soil heat flux (Gs_1, Gs_2, Gs_3) (unit:W/m2), soil moisture (Ms_2cm, Ms_4cm_1, Ms_4cm_2, Ms_4cm_3, Ms_6cm, Ms_10cm_1, Ms_10cm_2, Ms_10cm_3, Ms_15cm, Ms_20cm, Ms_30cm, Ms_60cm, Ms_80cm, Ms_120cm, Ms_160cm, Ms_280cm, Ms_320cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm_1, Ts_4cm_2, Ts_4cm_3, Ts_6cm, Ts_10cm_1, Ts_10cm_2, Ts_15cm, Ts_20cm, Ts_30cm, Ts_60cm, Ts_80cm, Ts_120cm, Ts_160cm, Ts_280cm, Ts_320cm) (unit:Degrees Celsius.

Processing and quality control of observation data :(1) 144 data per day (every 10min) should be ensured.The data of soil temperature and humidity and soil heat flux were missing between September 9, 2015 and September 19, 2015 and between September 30 and October 20, 2015 due to power supply problems.(2) eliminate the moments with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letters in the data is questionable data;(5) the format of date and time is uniform, and the date and time are in the same column.For example, the time is: June 10, 2015 10:30;(6) naming rules: AWS+ site name.

For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).


File naming and required software

Arou Superstation_AWS2015
Arou Superstation_AWS2016
Arou Superstation_AWS2017


Data Citations Data citation guideline What's data citation?
Cite as:

Che, T., Liu, S., Li, X., Xu, Z., Zhang, Y., Tan, J. (2019). Observation of water and heat flux in alpine meadow ecosystem——an observation system of Meteorological elements gradient of A’rou Superstation, 2015-2017. A Big Earth Data Platform for Three Poles, DOI: 10.11888/Geogra.tpdc.270202. CSTR: 18406.11.Geogra.tpdc.270202. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., & Yang, X. (2019). Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth System Science Data, 11, 1483-1499( View Details | Download | Bibtex)

2. Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., Ren, Z. (2018). The Heihe Integrated Observatory Network: A basin‐scale land surface processes observatory in China. Vadose Zone Journal, 17,180072. https://doi.org/10.2136/vzj2018.04.0072.( View Details | Bibtex)

3. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306.( View Details | Download | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., &Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140. (View Details | Download )

2.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., &Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. (View Details | Download )

3.Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1. (View Details )

4.Song, L.S., Liu, S.M., Kustas, W.P., Zhou, J., Xu, Z.W., Xia, T., & Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231, 8-19. (View Details | Download )

5.Song, L.S., Kustas WP, Liu, S.M., Colaizzi PD, Nieto H, Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam, N., Tolk, J., & Evett, S. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, doi:10.1016/j.jhydrol.2016.06.034. (View Details )

6.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., & Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 230-231, 45-57. (View Details )

7.Xu, T.R., Bateni, S.M., & Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. (View Details )

8.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., &Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. (View Details )

9.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., & Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. (View Details | Download )

10.Su, P.X., Yan, Q.D., Xie, T.T., Zhou,Z.J., & Gao, S. (2012). Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species. Acta Physiologiae Plantarum, 34(6), 2057-2068. (View Details )


Support Program

Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program (No:XDA20000000)

Copyright & License

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comments

Current page automatically show English comments Show comments in all languages

Download Follow
Keywords
Geographic coverage
East: 100.46 West: 100.46
South: 38.05 North: 38.05
Details
  • Temporal resolution: Yearly
  • File size: 77 MB
  • Views: 5731
  • Downloads: 175
  • Access: Requestable
  • Temporal coverage: 2015-01-13 To 2018-01-12
  • Updated time: 2021-04-19
Contacts
: CHE Tao   LIU Shaomin   LI Xin   XU Ziwei   ZHANG Yang   TAN Junlei  

Distributor: A Big Earth Data Platform for Three Poles

Email: poles@itpcas.ac.cn

Export metadata