Current Browsing: Humidity


Solar radiation dataset in three poles (2001-2017)

Solar radiation data were obtained using the internationally accepted solar radiation meter (LI200SZ, LI-COR, Inc., USA). The measured data are total solar radiation, including direct and diffuse solar radiation, with a wavelength range of 400-1100 nm. The units of the measurement results are W/㎡, and the typical error under natural lighting is ±3% (within an incident angle of 60°). Data from different locations in the three poles (Everest Station and Namco Station on the Tibetan Plateau, Sodankylä Station in the Arctic, and Dome A Station in the Antarctic) are derived from site cooperation and website downloads. The temporal coverage of data from the Everest Station and Namco Station on the Tibetan Plateau is from 2009 to 2016, that from the Sodankylä Station in the Arctic is from 2001 to 2017, and that from the Dome A Station in the Antarctic is from 2005 to 2014.

2020-10-14

WATER: Dataset of CMA operational meteorological stations observations in the Heihe River Basin

The dataset of CMA operational meteorological stations observations in the Heihe river basin were provided by Gansu Meteorological Administration and Qinghai Meteorological Administration. It included: (1) Diurnal precipitation, sunshine, evaporation, the wind speed, the air temperature and air humidity (2, 8, 14 and 20 o'clock) in Mazongshan, Yumen touwnship, Dingxin, Jinta, Jiuquan, Gaotai, Linze, Sunan, Zhangye, Mingle, Shandan and Yongchang in Gansu province (2) the wind direction and speed, the temperature and the dew-point spread (8 and 20 o'clock; 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 and 50hpa) in Jiuquan, Zhangye and Mingqin in Gansu province and Golmud, Doulan and Xining in Qinghai province (3) the surface temperature, the dew point, the air pressure, the voltage transformation (3 hours and 24 hours), the weather phenomena (the present and the past), variable temperatures, visibility, cloudage, the wind direction and speed, precipitation within six hours and unusual weather in Jiuquan, Sunan, Jinta, Dingxin, Mingle, Zhangye, Gaotai, Shandan, Linze, Yongchang and Mingqin in Gansu province and Tuole, Yeniugao, Qilian, Menyuan, Xining, Gangcha and Huangyuan in Qinhai province.

2020-10-12

Time series dataset of the long-term dry-wet index in Western China (AD1500-BP2000)

Original information on the long-term dry-wet index (1500-2000) in western China is obtained by integrating data on dry-wet/drought-flood conditions and precipitation amounts in the western region published over more than a decade. The integrated data sets include tree rings, ice cores, lake sediments, historical materials, etc., and there are more than 50 such data sets. In addition to widely collecting representative data sets on dry-wet changes in the western region, this study also clarifies the main characteristics of the dry-wet changes and climate zones in the western region, and the long-term dry-wet index sequence was generated by extracting representative data from different zones. The data-based dry-wet index sequence has a 10-year temporal resolution for five major characteristic climate zones in the western region over nearly four hundred years and a high resolution (annual resolution) for three regions over the past five hundred years. The five major characteristic climate zones in the western region with a 10-year dry-wet index resolution over the last four hundred years are the arid regions, plateau bodies, northern Xinjiang, Hetao region, and northeastern plateau, and the three regions with a annual resolution over the last five hundred years are the northeastern plateau, Hetao region, and northern Xinjiang. For a detailed description of the data, please refer to the data file named Introduction of Dry-Wet Index Sequence Data for West China.doc.

2020-10-09

NCEP reanalysis datasets (1948-2018)

1) The data set is composed of global atmospheric reanalysis data jointly produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). These grid data are generated by reanalysing the global meteorological data from 1948 to present by applying observation data, forecasting models and assimilation systems. The data variables include surface, near-surface (.995 sigma layer) and multiple meteorological variables in different barospheres, such as precipitation, temperature, relative humidity, sea level pressure, geopotential height, wind field, heat flux, etc. 2) The coverage time is from 1948 to 2018, and the data from 1948 to 1957 are non-Gaussian grid data. The data cover the whole world. The spatial resolution is a 2.5° latitude by 2.5° longitude grid. The vertical resolution is a 17-layer standard pressure barosphere, with layer boundaries at 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa, and 28 sigma levels. Some variables are calculated for 8 layers (omega) or 12 layers (humidity), with temporal resolutions of 6 hours, daily, monthly or a long-term monthly average (from 1981 to 2010). The daily data are obtained by averaging the daily values of 0Z, 6Z, 12Z and 18Z. 3) Missing values are assigned a value of -9.99691e+36f. The data are stored in the .nc format with the file name var.time.stat.nc, and each file includes data on latitude, longitude, time, and atmospheric variables. For detailed data specifications, please visit http://www.esrl.noaa.gov/pad/data.

2020-09-14

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.

2020-09-03

Meteorological, albedo and evapotranspiration data set of hulugou shrub experimental area in the upper reaches of Heihe River (2012-2014)

The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.

2020-08-01

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Daman superstation, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

2020-07-25

Dataset of high-resolution surface air exchange and low-level atmospheric structure of the Qinghai Tibet Plateau (August 2014)

Based on the WRF model, using ERA5 reanalysis data as the initial and boundary fields, the high-resolution low-level atmospheric structure and the earth atmosphere exchange data set of the Qinghai Tibet Plateau are preliminarily obtained by the method of dynamic downscaling. The time range of this data set is from August 1 to August 31, 2014, with a time resolution of 1 hour, a horizontal range of 25 °N-40 °N, 70oE-105oE, and a horizontal resolution of 0.05 °. The data format is NetCDF, and one file is output every hour. The file is named after the date. The lower atmospheric structure data includes temperature, relative humidity, water vapor mixing ratio, potential height, meridional wind and latitudinal wind meteorological elements, with 34 isobaric surfaces in the vertical direction; the surface air exchange data set includes the upward / downward short wave radiation, upward / downward long wave radiation, surface sensible heat and flux, 2m air temperature and water vapor mixing ratio, 10m wind, etc. The data set can provide data support for the study of weather process and climate environment in the Tibetan Plateau.

2020-07-08

Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

2020-06-24

Monthly standard weather station dataset in Sanjiangyuan (1957-2015)

Monthly meteorological data of Sanjiangyuan includes 32 national standard meteorological stations. There are 26 variables: average local pressure, extreme maximum local pressure, date of extreme maximum local pressure, extreme minimum local pressure, date of extreme minimum local pressure, average temperature, extreme maximum temperature, date of extreme maximum temperature, extreme minimum temperature and date of extreme minimum temperature, average temperature anomaly, average maximum temperature, average minimum temperature, sunshine hours, percentage of sunshine, average relative humidity, minimum relative humidity, date of occurrence of minimum relative humidity, precipitation, days of daily precipitation >=0.1mm, maximum daily precipitation, date of maximum daily precipitation, percentage of precipitation anomaly, average wind speed, maximum wind speed, date of maximum wind speed, maximum wind speed, wind direction of maximum wind speed, wind direction of maximum wind speed and occurrence date of maximum wind speed. The data format is txt, named by the site ID, and each file has 26 columns. The names and units of each column are explained in the SURF_CLI_CHN_MUL_MON_readme.txt file. site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Wulan 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Qiapuqia 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wudaoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Togton He 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maduo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98.10 9200.00 Shiqu 56043 34.47 100.25 3719.00 Guoluo 56046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Maqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suo County 56116 31.42 95.60 3873.10 Dingqing 56125 32.20 96.48 3643.70 Nangqian 56128 31.22 96.60 3810.00 Leiwuqi 56137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Seda

2020-06-24