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ABSTRACT

A complete map of the ocean subsurface temperature is essential for monitoring aspects of climate change

such as the ocean heat content (OHC) and sea level changes and for understanding the dynamics of the ocean/

climate variation. However, global observations have not been available in the past, so a mapping strategy is

required to fill the data gaps. In this study, an advancedmappingmethod is proposed to reconstruct the historical

ocean subsurface (0–700m) temperature field from 1940 to 2014 by using ensemble optimal interpolationwith a

dynamic ensemble (EnOI-DE) approach and a multimodel ensemble of phase 5 of the Coupled Model In-

tercomparison Project (CMIP5) historical and representative concentration pathway 4.5 simulations. The re-

constructed field is a combination of two parts: a first guess provided by the ensemble mean of CMIP5 models

and an adjustment by minimizing the analysis error with the assistance of error covariance determined by the

CMIP5models. The uncertainty of the field can also be assessed. This new approachwas evaluated using a series

of tests, including subsample tests by using data from the Argo period, idealized tests by specifying a truth field

from the models, and withdrawn-data tests by removing 20%of the observations for validation. In addition, the

authors showed that the oceanmean state, long-term trends, and interannual and decadal variability are all well

represented. Furthermore, the most significant benefit of this method is to provide an improved estimate of the

long-term historical OHC changes since 1940, which have important implications for Earth’s energy budget.

1. Introduction

The ocean is the key component in tracking Earth’s

heat budget (Abraham et al. 2013; Allan et al. 2014;

Church and White 2011; Church et al. 2011; Trenberth

et al. 2014a; Trenberth and Fasullo 2012); therefore, the

change in the ocean heat content (OHC) is a critical

metric for monitoring ongoing global warming (von

Schuckmann et al. 2016). Estimates of historical OHC

change rely on in situ temperature profile observations.

However, few temperature observations are available spa-

tially or temporally, leaving numerous data gaps. For ex-

ample, data were available only near the west coast of the

Pacific and Atlantic Oceans in 1941 (Fig. 1). The data

coverage was extended to the midlatitudes of the northern

Pacific and Atlantic Oceans by 1971, and then by 1991 to

most regions of the Northern Hemisphere. Until 2005, ob-

servations were scattered globally all over the ocean when

theArgo systemwas inaugurated (with the exception of the

Southern Ocean and coastal area) (Freeland et al. 2010;

Roemmich et al. 2012; von Schuckmann et al. 2014;

Roemmich et al. 2015; Riser et al. 2016). The lack of in situ

observations has impeded the accurate assessment of the

rate of global warming (Lyman and Johnson 2008;

Abraham et al. 2013; Cheng and Zhu 2014a) and the de-

velopment of an in-depth understanding of ocean and cli-

mate dynamics (Gille 2008).

A temperature field with complete spatial and tem-

poral coverage throughout the subsurface is always

preferred in oceanographic studies. A large group of

methods makes use of data assimilation techniques by

taking into account the ocean dynamics represented by

ocean models. These efforts have resulted in a number

of reanalysis datasets (Balmaseda et al. 2013; Carton

and Giese 2008; Chang et al. 2013; Xue et al. 2011).

However, OHC estimates in various reanalysis datasets

have revealed substantial differences, as indicated by
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reanalyzed intercomparison studies (Carton and

Santorelli 2008; Xue et al. 2012; Palmer et al. 2015).

Another group of strategies has been adopted by

the community to statistically fill in the data gaps

(Domingues et al. 2008; Good et al. 2013; Ishii et al.

2003; Levitus et al. 2012; Palmer and Haines 2009;

Roemmich and Gilson 2009; Smith and Murphy 2007;

Willis et al. 2004). Among these methods, Lyman et al.

(2010) and Palmer and Haines (2009) used the average

temperature anomaly of the sampled areas to represent

the global mean, which assumes that ocean change in

data-rich regions is the same as that in regions with data

gaps. Domingues et al. (2008) adapted an EOF analysis

based on the available data and used the principle

components obtained to represent the relationship

between a data-rich and a data-sparse region. Willis

et al. (2004) projected the sea level change onto the

OHC field based on their correlations.

In addition to the methods described above, other

methods have been used, which are often termed ‘‘ob-

jective interpolation methods.’’ These techniques re-

quire an error covariance field to propagate information

from observed regions to regions with data gaps com-

bined with a first-guess field to provide prior in-

formation. The first guess is always based on climatology

(i.e., with zero anomaly) for simplification (i.e., Levitus

et al. 2012; Smith and Murphy 2007; Ishii et al. 2003;

Good et al. 2013). This choice might cause the final field

to revert to the first-guess field, especially in areas where

there are large data gaps, such as in the Southern

Hemisphere (in Fig. 1 at 1941, 1971, and 1991). This

problem is suspected to result in underestimated long-

term OHC trend (Cheng and Zhu 2014a; Durack et al.

2014a). Therefore, a more appropriate strategy is to

improve the first guess; such an improvement is the

motivation for this study.

Meanwhile, the error covariance defines the correla-

tions among different ocean grids and determines how

the information propagates from data-rich to data-

sparse regions. The existing methods use parameter-

ized covariance based on some basic assumptions, for

example, typical correlation length scales (Good et al.

2013; Ishii et al. 2003; Levitus et al. 2012). The error

covariance fields in these studies are empirically con-

structed and are mainly determined by the spatial dis-

tance between the location analyzed and the location

observed. A better choice is to use a covariance defined

by the output of a high-resolution climate model simu-

lation, which allows a high-resolution representation of

error covariance (Smith and Murphy 2007). However,

this proposed method relies on the accuracy of the ap-

plied ocean model, which always contains a systematic

bias to some extent; therefore, a potential improvement

is the use of an ensemble of models, which is another

motivation of this study.

Here, an ensemble of model outputs from historical

runs and representative concentration pathway 4.5

(RCP4.5) of phase 5of theCoupledModel Intercomparison

Project (CMIP5) is used to provide a more reasonable

choice for the first-guess field and error covariance

statistics. The conclusion of the Fifth Assessment Re-

port (AR5) of Intergovernmental Panel on Climate

FIG. 1. Coverage of in situ temperature observations at a depth of 10m in January 1941, 1971, 1991, and 2010. The color shows the average

temperature anomaly (8C) in each 18 3 18 grid.
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Change (IPCC) states that ‘‘there is high confidence

that many CMIP5 models reproduce the observed in-

crease in ocean heat content since 1960,’’ and many

other studies agree (AchutaRao et al. 2007; Gleckler

et al. 2012; Flato et al. 2013; Cheng et al. 2015b; Smith

et al. 2015). Therefore, an ensemble of models could

be a reasonable choice to generate the first-guess field,

which is better than using climatology that has a zero

temperature anomaly over time. Moreover, by using

the ensemble strategy, the impact of model bias can be

minimized and a more accurate value for the covariance

could potentially be achieved.

This manuscript is structured as follows: the data used

for this study is introduced in section 2. Themethods and

the related choices of parameterizations are introduced

in section 3. To determine one of the key parameters and

perform a first validation of the method, the data for a

recent decade are used in section 4 because the Argo

network helps to maintain a dataset with a near-global

coverage. The idealized experiments based on the

models are outlined in section 5, which illustrates the

improvement due to the proposed strategy when using

either a perfect or a slightly biased first-guess field.

However, the error covariance is exactly known in these

idealized tests. In section 6, we further examine the

method by using in situ observations for which the error

covariance is unknown. We withdrew a portion of the

in situ observations as an independent dataset for vali-

dation. In section 7, the obtained reconstructed tem-

perature field is compared with other datasets. A brief

description of the analysis field is presented in section 8,

in which we highlight the historical upper ocean heat

content estimate from 1940 to 2014 based on the ana-

lyzed field. A discussion of possible future applications is

provided in section 9.

2. Data

In situ ocean temperature observations are sourced

from the World Ocean Database 2013 (WOD13) from

1940 to 2014, with more than 10 000 000 temperature

profiles (Boyer et al. 2013). The quality flags provided

byWOD13 are used to remove erroneous profiles and

measurements. An additional standard deviation

check is also utilized to remove spurious temperature

measurements, whereby measurements more than five

standard deviations away from the mean are removed.

XBT bias is corrected by using the process of Cheng

et al. (2014), and mechanical bathythermograph

(MBT) bias is corrected by using the process of Ishii

and Kimoto (2009).

Twelve monthly climatologies were constructed by

averaging all of the temperature profiles from 1999 to

2005 into 18 3 18 ocean grid boxes and 27 standard

depths, from the sea surface to 700m. The standard

depths were as follows: 1m, 5m, 10–100m in 10-m in-

tervals, 120–200m in 20-m intervals, and 250–700m in

50-m intervals. Then, a nine-point median filter (around

each specific horizontal grid) was applied to the result-

ing blended fields. Only seven years (within 1999–2005)

of data were used for the following reasons:

1) Cheng and Zhu (2015) indicated that a long-term

climatology will bias the long-term calculation of

OHC, so a climatology constructed using data from a

short period was preferred for this study.

2) The CMIP5 models of historical simulation ended in

2005, and then the RCP4.5 simulation began in 2006.

However, the successive RCP simulations for nine

models were not available.

3) The global OHC time series obtained using the 1999–

2005 climatology is very similar to that obtained by

using the 2008–12 climatology when using the method

of Cheng et al. (2015b).

The climatology is subtracted from each temperature

profile to obtain a temperature anomaly profile. Then,

the anomaly profiles are averaged in 18 3 18 grid boxes

for each month and 27 standard depths to obtain the

grid-averaged and monthly temperature anomaly field.

Given the slowness of ocean temporal variation, in each

month, we use data collected over a 3-month window to

calculate the monthly mean, which helps to increase the

data coverage without losing the ENSOvariation. In this

study, the proposed mapping method was applied to this

grid-averaged, monthly temperature anomaly field.

The CMIP5 model output of historical runs from 1940

to 2005 and an RCP4.5 scenario from 2006 to 2014 was

assembled for this study (Taylor et al. 2012). The his-

torical runs included 40 separate runs and the RCP4.5

projections included 31 separate runs, which are listed in

Table 1. We note here that a so-called ‘‘climate drift’’

exists for CMIP5 climatemodels (SenGupta et al. 2013),

which is a spurious long-term variation that cannot be

explained by internal and external forced variability.

According to Durack et al. (2014a), the upper 0–700m

of the OHC is only weakly affected by climate drift;

therefore, we did not apply a correction for climate drift

in this study.

The data preparation for each CMIP5model is similar

to the observations. In brief, for each model, the tem-

perature field was first interpolated to a 18 3 18 grid and

27 standard depths, and then 12 monthly climatologies

were constructed using the 1999–2005 data. The tem-

perature anomaly field was then obtained by subtracting

the climatology from the interpolated field. This process

was repeated separately for 40 (31 after 2006) times for
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40 (31) models, and then we obtained 40 (31) grid-

averaged, monthly temperature anomaly fields, which

served as the input for our proposed mapping method.

The use of the temperature anomaly field rather than

temperature field in the mapping is emphasized because

the spatial and seasonal variation of the ocean (on the

order of 18C from the equator to the polar region and

0.18C from summer to winter) is much larger than its

interannual (on the order of 0.018Cyr21 for global av-

erage signals) and multidecadal variation (on the order

of 0.0018Cyr21 for global average signals). The climate

models have substantial differences in simulating the

mean ocean state, including spatial and seasonal varia-

tion, but they are not our primary focus. Instead, the

anomaly field is used to remove the impact of the ocean

spatial and seasonal variation.

3. Methods

A framework combining in situ observations and

CMIP5 models is required to obtain the final analysis

field. In this section, we briefly describe themethod used

in this study, the ensemble optimal interpolation

method with a dynamic ensemble (EnOI-DE), which is

based on the Kalman filter (KF; Kalman 1960; Evensen

1994, 2003, 2004). The analysis field Xa is a linear com-

bination of a prior guess field Xb (or background field),

and in situ observations (as denoted in matrix y):

Xa 5Xb 1K(y2HXb) , (1)

where H is the transfer matrix from the analysis space to

observation space, and theKalman gainK is obtained by

the maximum likelihood method by minimizing the

analysis error. The Kalman gain is calculated by

K5PbHT(HPbHT 1R)21 . (2)

The superscript T denotes the transposition opera-

tion; R is the error covariance of the observations,

which is always predefined (a description of the

method will be provided later); and Pb is the error

covariance of the background field. This covariance is

essential for propagating the signals from the data-

rich to the data-sparse regions. Ideally, Pb has to be

calculated explicitly given the model propagation

matrix. However, because ocean dynamics are greatly

nonlinear, it is impossible to explicitly calculate Pb.

Some methods use an empirically parameterized Pb as

an approximation (Good et al. 2013; Ishii et al. 2003;

Levitus et al. 2012), but the accuracy of such a method

is unclear. Improved strategies include the ensemble

Kalman filter (EnKF) method (Evensen 1994, 2004);

the ensemble optimal interpolation (EnOI; Evensen

2003); and the ensemble square root filter (EnSRF;

Bishop et al. 2001; Sakov and Oke 2008a,b), which use

an ensemble of models to represent the background

error covariance (Pb). In this way, N ensemble mem-

bers of the model outputs are recorded in matrix A,

which is defined as A 5 (Xb
1, X

b
2, . . . , X

b
N). The en-

semble mean of the models is

Xb 5
A1

N
, (3)

where 1 is the unity vector. The model covariance (or

background covariance) Pb is now calculated as

TABLE 1. List of CMIP5 models used in this study. There are 17 different models and 40 (31) different ensemble runs in total from 1940

to 2005 (from 2006 to 2014). [CESM1(BGC) is the CommunityEarth SystemModel, version 1, with biogeochemistry; additional acronyms

are available online at http://www.ametsoc.org/PubsAcronymList.]

Model name Modeling center (or group) Ensemble run Projection (RCP4.5)

1 HadCM3 Met Office Hadley Centre R1, R2, R3 R1, R2, R3

2 CESM1(BGC) Community Earth System Model contributors R1 R1

3 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences R1, R2, R3 R1

4 BCC_CSM1.1(m) Beijing Climate Center, China Meteorological Administration R1, R2, R3 R1

5 GFDL CM2.1 NOAA/Geophysical Fluid Dynamics Laboratory R1, R2, R3 R1, R2, R3

6 GISS-E2-H NASA Goddard Institute for Space Studies R2, R3 R2, R3

7 GISS-E2-R NASA Goddard Institute for Space Studies R2, R3 R2, R3

8 NorESM1-M Norwegian Climate Centre R2, R3 —

9 CCSM4 National Center for Atmospheric Research R1, R2, R3 R1, R2, R3

10 MPI-ESM-P Max Planck Institute for Meteorology R1 —

11 MPI-ESM-MR Max Planck Institute for Meteorology R1, R2, R3 R1, R2, R3

12 MPI-ESM-LR Max Planck Institute for Meteorology R1, R2, R3 R1, R2, R3

13 IPSL-CM5A-LR L’Institut Pierre-Simon Laplace R1, R2, R3 R1, R2, R3

14 IPSL-CM5A-MR L’Institut Pierre-Simon Laplace R1, R2, R3 R1

15 IPSL-CM5B-LR L’Institut Pierre-Simon Laplace R3 R1

16 CanESM2 Canadian Centre for Climate Modelling and Analysis R1, R2, R3 R1, R2, R3

17 BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration R1 R1
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Pb 5
�
N

i51

(Xb
i 2Xb)(Xb

i 2Xb)T

(N2 1)
. (4)

For the traditional EnKF or EnSRF method, the

error covariance is propagated and updated according

to the following equation: Pa 5 (I 2 KH)Pb. Thus, the

analyses of the next time step use the information from

the current time step. However, in this study, the

CMIP5 models were not constrained by observations,

so they do not carry the covariance information from

the previous cycles forward in time. EnKF-like sys-

tems that use static or seasonal ensembles are often

classified as the EnOI method. Therefore, the method

used in this study is characterized as EnOI-DE,

and the dynamic ensemble is provided by the un-

constrained simulations of the CMIP5 models. The

implementation of the method follows Sakov and

Oke (2008a,b).

The general framework of the mapping method has

now been developed. The reconstructed field (Xa) is

themonthly temperature anomaly in each 18 3 18 ocean
grid at each standard depth. In other words, the map-

ping strategy has been applied to the grid-averaged

temperature anomalies in a plane with two-dimensional

latitude–longitude. The background field (Xb) is the en-

semble mean of the 40 pre-2005 CMIP5 models (N5 40)

and the 31 models from 2006 to 2014 (N5 31), and each

observed anomaly (y) is the gridded average andmonthly

in situ observation.

It is still necessary to define some key parameters for

the application of this method. For clarity, the parame-

ters are defined as follows.

d The observation error variance R represents the

error of the observations that must be defined prior

to the analysis. It consists of both the instrumental

error Re due to instrument inaccuracy and the

representativeness error Rr due to the need to

represent the spatial (at 18 3 18 and 1-m standard

grid depths) and temporal (1 month) averages

from a limited numbered of observations. Both the

instrumental error and the representativeness errors

are assumed to be uncorrelated between any two

different grids; therefore, both Re and Rr are di-

agonal matrices. This assumption may not be correct

if the temperature observations in two different

grids are made by using the same instruments or

on the same cruise, which might lead to a correlation

of the errors in the two grids. For instance, most of

the XBT data are obtained by analog systems before

1985, which has a larger bias, and by digital systems

after 1990 with smaller bias. However, we decided to

ignore this correlation because it is difficult to

quantify.

According to the discussion, the observational

error variance in each spatial (18 3 18 and standard

depth) and temporal (1 month) grid is calculated as

follows:

R5Re1Rr5

�
M

j51

Ei
j

M
1

s2

M
, (5)

whereM observations exist for a given grid cell;Re in

each grid cell is set to the mean of the typical

precision of the different instruments used to obtain

the data in the cell; and Ei is the precision of the

instrument for each individual observation, which is

the variance of the instrumental error and is set to

0.18C2 for XBT, 0.0018C2 for CTD, 0.0028C2 for Argo,

0.38C2 for MBT, and 0.018C2 for the other instru-

ments according to Abraham et al. (2013). Because

Rr defines the accuracy of the monthly mean value in

each cell, it is approximated by the variance of the

monthly mean values of the temperature anomalies.

The symbol s2 represents the variance of the various

temperature measurements against the monthly

mean value. The data from 2005 to 2013 are used

to calculate the value of s2 in each grid because of

the approximately full global coverage of the data,

which are shown in Fig. 2 for depths of 1, 300, and

700m. The representativeness errorRr is expected to

show flow dependency, that is, the error is expected

to be higher in areas where a gradient in the flow rate

(speed) is present. The error is larger in regions of

higher variability, so more observations are required

to represent the mean value. Figure 2 shows a larger

representativeness error in the boundary-current

regions and near the Antarctic Circumpolar Current

(ACC) regions.
d Next, the need for a localization strategy should be

determined. This strategy assumes that each obser-

vation could only impact a limited region around its

location. The application of a localization strategy

helps to minimize the impact of an imperfect error

covariance, which could propagate the information

incorrectly over a much longer distance. In general,

an error in the model covariance will initially in-

crease with distance from the analysis point, but it is

almost impossible to specify an exact box (its size is

determined by the influencing radius) within which

the observations could benefit the analysis and out-

side of which they could not because the truth

correlation length is unknown. Previous studies

either specified a constant length scale over the
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global ocean [i.e., the three-pass analyses of 880,

660, and 440 km in Levitus et al. (2012) or ;300 and

;900 km in Willis et al. (2004)] according to the

ocean large-scale wavenumber spectral in Zang and

Wunsch (2001) or an empirically parameterized

scale [i.e., a length scale that decreases with latitude,

as in Ishii et al. (2003), or estimates according to the

Hadley Centre Sea Ice and Sea Surface Tempera-

ture (HadISST) data in Smith and Murphy (2007)].

However, a localization strategy interferes with the

potential advantage of an improved covariance.

Therefore, we included a test in the next section to

justify the usage of a localization strategy and

empirically determine the influencing radius that

defines a specific area; data outside that area are not

used for analysis.

4. Evaluation by using data in recent decade

During the last decade, the Argo network achieved

near-global coverage (Abraham et al. 2013; Roemmich

et al. 2015; Riser et al. 2016). Therefore, in this section, we

describe the conduction of a subsample test by sampling

the data from the past eight years (2007–14) at historical

observation locations. Similar tests were also done by a

recent study (Smith et al. 2015). This test was used first to

examine the impact of a localization strategy, to de-

termine the maximum influencing radius as discussed in

the previous section, and then to preliminarily evaluate

the proposed mapping method.

In the subsample test, we used the temperature

anomaly at 10m for each selected month (January and

August from 2007 to 2014) as the truth value (for a total

FIG. 2. Representativeness errors in each grid at (top) 10m, (middle) 300m, and (bottom)

700m. The color shows the values of s2 in Eq. (5), which were calculated by the standard

deviation of different individual temperature measurements against the monthly mean value.
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of 16 truth fields). To achieve better spatial coverage,

the data within 3 months around the selected month

were averaged together. Each truth field was then sub-

sampled according to the history of the observation lo-

cations (on January at every five years from 1941 to

2014). Thus, 16 subsampled fields were generated for

each truth field. To examine the performance of the new

method, all of the subsampled fields were mapped using

the proposed method and then compared with the truth

fields. This test was run multiple times by using different

influencing radii from 48 to 368 with 48 increments, and

another run without using a localization strategy was

also carried out.

The global mean error between the mapped fields and

the truth fields are shown by dots in Fig. 3a as a function

of the influencing radius. It appears that a radius be-

tween 168 and 248 minimizes the error of the re-

constructed field. An influencing radius larger than 248
allows more remote correlations, but it increases the

error, suggesting the inaccuracy of the remote co-

variance represented by models. An influencing radius

less than 168 also increases the analysis error because of

the ineffective propagation of information from data-

rich to data-sparse regions. Therefore, we used 208 as the
influencing radius for the localization strategy. It is

noted here that it requires a taper function in the lo-

calization strategy, which defines how much an obser-

vation can impact the analyzed grid. In this study, we

adapted aGaussian function assuming that the impact of

the observation is exponentially decreasing with distance

away from the analyzed grid. Tests to find the best

selection of the taper function will be the first priority

for the future improvement of the proposed method,

for example, the functions proposed by Gaspari and

Cohn (1999).

Figure 3a shows that the global mean temperature

errors (defined as analysis minus observation) are al-

ways positive, indicating an error in the reconstructed

field. To further investigate this error, we presented the

temperature error as a function of the sampling year

from 1941 to 2014 in Fig. 3b, with the influencing radius

set to 208. A positive error was found for the pre-1965

ocean sampling. By contrast, for post-1965 ocean sam-

plings, the proposed mapping method could reconstruct

the truth field in an unbiased manner, leading to errors

in values around zero. This indicated that the new

method could reduce the impact of the change of the

observation system from the traditional ship-based sys-

tem to the Argo system at the beginning of this century,

as documented in Cheng and Zhu (2014a). Next, we will

explore the reasons that some pre-1965 errors might be

present and how well the information was propagated

from the data-rich to data-sparse areas.

The geographical distribution of temperature anom-

alies at 10m in January 2014 is shown in Fig. 4, along

with the reconstructed field. The subsampled fields for

each observation location in January 1941, 1961, 1981,

and 2001 as well as the corresponding mapped fields are

also shown. In 2014, the ocean evidenced a moderate La

Niña pattern, with cooling signals in the eastern and

FIG. 3. (a) Mean temperature error as a function of different choices of the influencing radius between the

reconstructed and truth fields. Each dot represents the averaged temperature error for each truth field and each

influencing radius, where the errors at 16 sampling years are averaged together. (b) Mean temperature error as

a function of sampling years from 1941 to 2014, with an influencing radius of 208. Dots of different colors represent

the 16 different truth fields. The red line with squares and the error bars show the mean and standard deviation,

respectively.
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FIG. 4. (left) Subsampled temperature anomalies. The temperature anomaly field at 10m in January 2014 was subsampled according to

the observation locations (top)–(bottom) in January 1941, 1961, 1981, 2001, and 2014. The color shows the average temperature anomaly

in each 18 3 18 grid. (right) The field mapped by using the proposed method is presented.
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southeastern Pacific together with strong warm anom-

alies in the northwestern Pacific. The Indian Ocean ex-

perienced cooling in the north and warming in the south,

and the Atlantic Ocean showed warming in the mid-

latitudes and cooling in the other latitudes.

In January 1941, only some grids were observed in

the coastal regions near Japan, western Australia, and

in the northwestern Atlantic Ocean, so the tempera-

ture anomaly pattern in midlatitudes in the North-

ern Hemisphere and near Australia can be correctly

reconstructed. However, in the western Indian, south-

eastern Pacific, and South Atlantic Oceans, the recon-

structed field reverts to the first-guess field, which

shows different geographical patterns than the true

patterns. This is because the localization strategy

prevents the propagation of information from the

observed regions to the data-sparse regions with a

spatial distance larger than 208. This illustrates a key

assumption of the proposed method: the final ana-

lyzed field will revert to the first guess when very few

observations are available (e.g., pre-1960). Under

such circumstances, the current method trusts the

first-guess field provided by the models, which leads to

the pre-1960 error in Fig. 3b. The bias of the long-term

trend due to this assumption was quantified and the

results are presented in the following sections.

In 1961, the data coverage increased to greater than

10%, although the data were still distributed around the

major cruise line routes. The geographical pattern of the

reconstructed field agrees well with the truth field for

2014 (Fig. 4), and the global averaged error is lower

compared with 1941 (Fig. 3b). This suggests that the

unconstrained ensemble of model runs contains the

correct type of variability to reconstruct the temperature

field. Similar results can be found for the ocean sampling

in 1981 and 2001.

In summary, we used the data from the last decade to

determine the influencing radius and to perform a pre-

liminary evaluation of our proposed method. We

showed that the new mapping method is able to re-

construct the truth field post-1960 in an unbiased man-

ner, but the reconstructed field shows a slight reversion

to the first-guess field pre-1960. We note here that the

principal shortcoming of this test is that data for this

decade still does not have global coverage, especially in

coastal areas and in the Southern Ocean.

5. Idealized tests using CMIP5 models

To evaluate the new method and examine potential

improvement of the present analysis for historical ocean

heat content change, a series of idealized tests were

constructed by explicitly specifying a truth field. Pseudo

observations were constructed by sampling the truth

field according to the locations of historical observations

from 1940 to 2014. Observational errors are added to the

pseudo observations by generating random noise with

zero mean and standard deviation calculated by Eq. (5).

Then, the pseudo observations were analyzed by using

a mapping method (discussed in the following). Fi-

nally, the mapped field we obtained was compared

with the truth field to evaluate the performance of the

reconstruction.

Three different mapping methods were applied sep-

arately for comparison (note that not all available

mapping methods were compared):

1) The Gmean method uses an OHC calculated from

the available data to represent the global OHC,

potentially assuming that the OHC in data gaps is

equal to the mean OHC in the available-data region.

This method has beenwidely used in previous studies

such as in Lyman et al. (2010) and Palmer et al. (2007).

2) The parameterized (PARAM) method is group of

methods that used a parameterized error covariance

(according to the spatial distance between the ana-

lyzed grid and the observations) and climatology

(zero anomaly) as the first-guess field. Several major

data centers have employed a similar method (e.g.,

Good et al. 2013; Ishii et al. 2003; Levitus et al. 2012).

In this study, we adapted the method presented in

Levitus et al. (2012).

3) The proposed method in this study (referred to as

EnOI-DE/CMIP5 hereafter).

To test the performance of the threemethods outlined

above, and the following two experiments were con-

structed by setting two different truth fields:

1) The ‘‘truth ensemble’’ is the ensemble mean of the

CMIP5 model outputs was used as the truth field.

Because the first-guess field is the CMIP5 ensemble

mean, this experiment showed the performance of

the mapping methods when the first-guess field is

exactly known.

2) The ‘‘truth select’’ is when one of the model outputs

was randomly selected as the truth field. This

experiment indicated the impact of a slightly biased

first-guess field because the model selected has a

different mean than the ensemble mean of the

CMIP5 models. We used theHadley Centre Coupled

Model, version 3, as an example for better illustra-

tion, but the use of the other models would have

led to the same conclusion.

The monthly and global means of 10-m (represen-

tative of SST) and 0–700-m-averaged temperature

anomalies (representative of OHC) from 1940 to 2014
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when the first-guess field was exact (the truth ensemble

experiment) are presented in Fig. 5. Both the SST and

OHC by the EnOI-DE/CMIP5 mapping exactly match

the truth field, and the root-mean-square error (RMSE)

is close to zero (Fig. 6), indicating that the newmethod is

capable of reconstructing the historical ocean change

when the first-guess and error covariance fields are well

represented by the CMIP5 models. However, the his-

torical SST and OHC time series from the PARAM

mapping strongly revert to zero at earlier times, espe-

cially prior to 1970, mainly because large data gaps are

present in the early era, which have beenmostly filled by

the first-guess field (zero anomaly). In addition, the

Gmean approach results in a larger increase in the SST

and OHC because the observations prior to 2000 were

mainly from the Northern Hemisphere, which had ex-

perienced stronger warming than the Southern Hemi-

sphere (Cheng and Zhu 2014a).

When the first-guess field was substantially biased

(i.e., the truth select experiment), the proposedmapping

method also reconstructed the truth of the SST and

0–700-m-averaged temperature anomaly well, as shown

in Fig. 5, especially after 1955. A significant improvement

was found when using the new method over both the

Gmean-mapping and PARAM-mapping methods be-

cause the new method resulted in a smaller mean error

and RMSE, as shown in Fig. 6. However, pre-1955, the

analyzed field slightly shifted to the CMIP5 ensemble

mean. This confirms the analyses in the previous section,

which indicate that the new method confers some trust

FIG. 5. Monthly time series of (a),(c) 10-m and (b),(d) 0–700-m-averaged temperature anomaly from 1940 to 2014 for two experiments:

(top) the truth ensemble experiment and (bottom) the truth select experiment. The three mapping strategies are shown: the proposed

method in red, the PARAMmethod in green, and theGmeanmethod in blue. The truth is shown in black, and theCMIP5model ensemble

mean is shown in cyan.
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on the first-guess field when the data coverage is ex-

tremely sparse. Therefore, the performance of the new

method pre-1960might depend partly on how accurately

the CMIP5 model ensemble represented the long-term

temperature change. This error could either under- or

overestimate the long-term trends of the historical

ocean subsurface temperature change.

We included an additional experiment to quantify the

impact of the first-guess field on the estimate of long-

term trend of the SST and the 0–700-m temperature

change based on the truth select framework. We ran-

domly selected 10 models as the truth and then com-

puted the long-term trend for the first guess (CMIP5

ensemble mean), truth, and the reconstructed field.

Figure 7 shows the percent error of the long-term trend

for both the first-guess and the reconstructed field

compared with the truth. Generally, the use of the

proposed method could reduce the trend error to less

than 20% from 1940 to 2014, 10% from 1970 to 2014, and

5% from 1990 to 2014, even if the trend error of the first-

guess fields ranged from 260% to 80%. These results

indicated that the new technique could capture long-

term trends that were significantly different than the first

guess. A worse first-guess field (with larger error) could

lead to larger trend errors for the reconstructed field.

However, according to Cheng et al. (2015b), the OHC

trend of the CMIP5 ensemble mean over the 1970–2005

period was only 12% weaker than their observation-

based estimate, suggesting that the multimodel ensem-

ble mean was a reasonable choice for the first-guess field

(the trend error will be less than 10%). Furthermore, a

slightly smaller error was found for the trend at 10m

FIG. 6. Mean (solid curves) and RMSE (dashed curves) of the temperature difference between the analysis field and the truth field for

(a),(b) truth ensemble experiments and (c),(d) truth select experiments for (left) the 10-m temperature anomaly and (right) the 0–700-m

average temperature anomaly. The three mapping strategies are shown: the proposed method in red, the PARAMmethod in green, and

the Gmean method in blue.
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than the trend at 0–700m, especially before 1960 be-

cause of better data coverage in the upper ocean than in

the deeper ocean.

6. Assessment against withheld observations

The subsample tests and idealized tests indicated the

potential for the improvement of the reconstruction of

the temperature fields from pseudo observations by us-

ing the EnOI-DE/CMIP5 method. In this section, we

further evaluated the proposed approach by applying

the mapping method to a portion of observations (80%)

and using the remaining data (20%) for validation. To

perform the subdivision, we randomly divided the ob-

servation dataset in each month into five subsets, each

containing 20% of the data. Five different tests were

FIG. 7. Percent error of the long-term trend of the reconstructed field and the first-guess field

compared to the truth field. The long-term trend was calculated from a start time (shown at

time N in x axis) to 2014. The red curves show the percent error for reconstructed field, which

was calculated by [trend(reconstructed) 2 trend(truth)]/[trend(truth)], and the light blue

curves are the error for the first guess, [trend(first guess) 2 trend(truth)]/[trend(truth)], for

(a) global averaged temperature trend at 10-m and (b) 0–700-m-averaged temperature. The

dark gray shading shows the error from 220% to 20%, and the light gray shading is the error

from 210% to 10%.
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performed, and each test used one of the subsets for

validation and the remaining four for reconstruction. In

this way, when performing five tests, all of the obser-

vations could be validated.

Figure 8 presents the monthly time series of the mean

error and RMSE between the analyzed fields with re-

spect to thewithdrawn data (an average of the five tests).

Based on the global average, the new method again re-

sulted in a smaller error compared with the other two

methods and reduced the RMSE by 0.248C (0.388C)
compared with Gmean mapping and by 0.168C (0.148C)
compared with the PARAMmethod at 0–700m (at 10-m

depth).

More detailed information was obtained by evaluat-

ing the geographical distribution of the mean error and

the RMSE between the analyzed field and the with-

drawn data when comparing the following three map-

ping methods: EnOI-DE/CMIP5 (Figs. 9a,b), Gmean

(Figs. 9c,d), and PARAM (Figs. 9e,f). Generally, all of

the methods led to smaller mean errors and RMSE in

low latitudes within 308S–308N than in higher latitudes

and larger errors near the boundary current system be-

cause larger spatial and temporal mesoscale variabilities

exist in the boundary current system, which are difficult

to reconstruct. However, EnOI-DE/CMIP5 mapping

resulted in much smaller errors than the other two

methods over the global ocean. Compared with the

PARAM method, better reconstruction of the temper-

ature field was found for the Kuroshio and Gulf Stream

with the proposed method. Those regions have been

well sampled by historical ship-based observation sys-

tems, so this improvement indicates the effect of the

covariance field. A globally consistent covariance (as in

PARAM), which assumes the same spatial correlation

over the global ocean, might not be accurate enough to

represent the anisotropy of the covariance in those re-

gions. By contrast, the models have some capability to

simulate the general ocean circulation and could

provide a better representation of the covariance for the

boundary current system. In the same way, the proposed

method also showed a smaller error than PARAM in the

ACC regions. Furthermore, the Gmean method re-

sulted in much larger errors inmiddle and high latitudes,

indicating a key limitation of the traditional represen-

tative method. Because different temporal variations

are present at different locations, filling the data gaps

with the mean OHC in well-sampled regions led to the

largest errors.

The results of the data withdrawal test again con-

firmed that the proposed method could reconstruct the

historical temperature change. However, this test also is

limited because the withdrawn data are mostly from the

well-sampled regions. This indicates that this test mainly

revealed the performance of the mapping methods in

the data-rich regions.

7. Assessment with individual datasets

After the three different evaluations shown in the

previous sections, the improvement of the proposed

mapping method for reconstructing subsurface temper-

ature fields is evident. Therefore, we applied the ap-

proach to the entire dataset and obtained the analyzed

field of the ocean subsurface temperature. In this sec-

tion, additional assessments were made by focusing on

several different key metrics of the climate system be-

cause it is also important to investigate whether the new

dataset is capable of representing the mean state and

historical ocean variations on various time scales, such

as a long-term trend, interannual variability, and de-

cadal variability. We note that the assessments are

FIG. 8. Mean (solid curves) and RMSE (dashed curves) for the

temperature difference between the analysis data and the with-

drawn data (a) for the 10-m temperature anomaly and (b) for

0–700-m-averaged temperature anomaly.
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mainly made for the sea surface temperature field be-

cause no independent subsurface dataset exists. How-

ever, these assessments also have important implications

for the performance of the reconstruction of the ocean

subsurface.

a. Reconstruction of the ocean climatology

Although the ultimate goal of this study is to

provide a complete subsurface temperature anomaly

field for climate change studies, it is also important to

examine the temperature filed in the first evaluation.

The 0–700-m average temperature during 2005–12,

based on the fields reconstructed in this study, is pre-

sented in Fig. 10 and compared with the climatologies

in World Ocean Atlas 2013 (WOA13; Locarnini et al.

2013). WOA13 is a well-developed and widely used

ocean climatology that uses an objective analysis. The

most important development was its increased spatial

resolution; two resolutions are presented (18 3 18 and
1/48 3 1/48). Our 0–700-m average temperature clima-

tology shows nearly an identical pattern with WOA13

in the 18 3 18 resolution, indicating a warm pool at the

western boundary within 108–308N and 108–308S in

each ocean basin. Although the 0–700-m average

temperatures show small seasonal variability because

of the large heat capacity of the ocean, ocean warming

in the Northern (Southern) Hemisphere is still detect-

able in summer (winter). Furthermore, the WOA13

climatology in the 1/48 3 1/48 resolution reveals a similar

pattern as the two climatologies discussed above but

shows more mesoscale signals. This implies that this

study could be potentially improved in the future by

increasing the resolution to gain a better representa-

tion of the mesoscale eddies.

FIG. 9. Geographical distribution of the 0–700-m average temperature error (8C) and RMSE (8C) between the analysis field and

withdrawn observations (average of the five withdrawn data tests, each withdrew 20% of the data) for (a),(b) the newmethod, EnOI-DE/

CMIP5; (c),(d) PARAM mapping; and (e),(f) Gmean mapping.
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b. Reconstruction of SST change

The sea surface temperature (SST) is an important

variable associated with climate change, which has been

carefully analyzed in various data centers (Kennedy et al.

2011; Rayner et al. 2003; Cowtan and Way 2014). SST

variability at different time scales is well documented in

the literature because it plays a crucial role in the air–sea

interaction and dominates climate feedback related to

global warming (i.e., thewater cycle). Furthermore, it is also

independent because it is measured by a different obser-

vation system (ship hulls, buoys, and insulated buckets)

rather than via Argo or XBT devices. Therefore, the SST

data can be considered an independent dataset for the

validation of our new dataset. In this section, we compared

our analyzed field at a depth of 10m with an independent

and fully evaluated dataset, HadSST3 from the Met Office

(Kennedy et al. 2011). Figure 11 shows the monthly time

series of the global SST change from 1940 to 2014 in the

reconstructed field compared with HadSST3. It is apparent

that the interannual variability of the SST is nearly identical

in both datasets, suggesting that the SST field has been well

represented by the new approach. Regarding long-term

changes, the EnOI-DE/CMIP5 method results in a linear

trend of approximately 0.00698Cyr21 from 1940 to 2014

and approximately 0.01278Cyr21 from 1970 to 2014,

showing a slightly stronger trend than theHadley Centre

SST, version 3 (HadSST3), dataset from 1940 to 2014

FIG. 10. Comparison of the 0–700-mocean average temperature (8C) for 2005–12 between the reconstructed field from (top) this study and

two versions of WOA13, (middle) 18 3 18 and (bottom) 1/48 3 1/48 resolution, shown separately for (left) January and (right) August.
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(;0.00578Cyr21) and a near-identical trend from 1970 to

2014 (;0.01288Cyr21). These differences can be attributed

to 1) the difference in the landmask used by the twogroups;

2) thedifference in the reconstructedmethods, in particular,

the results of our method might be slightly reverted to the

first-guess field pre-1960; and 3) uncertainties in both the

sea surface temperature datasets (HadSST3) and the near-

surface datasets (this study).

The correlation of SST change in each 18 3 18 grid
between the reconstructed dataset and the HadISST

dataset (Rayner et al. 2003) is shown in Fig. 12, where

the long-term linear trend and the seasonal cycle in each

grid has been removed. The results showed a significant

positive correlation within 308S–608N, as follows: R .
0.5 in general from 1940 to 2014 and R . 0.7 from 1970

to 2014. However, a small or even a negative correlation

in the Southern Ocean (608–308S) was apparent, which
was due to the lack of observations for both subsurface

and sea surface temperatures (i.e., HadISST).

c. Reconstruction of interannual variability (ENSO)

ENSO is the most important signal on the interannual

scale in the climate system; it is able to affect weather

conditions over the entire globe by teleconnection

FIG. 11. (a) Global temperature anomaly time series at 10m from 1940 to 2014: the ensemble

mean is in red, and 40 (31 after 2006) ensemble members are in gray. Plus and minus one

standard deviation is shown in pink. Global SST change in HadSST3 dataset is shown in blue.

(b) Niño-3.4 index calculated by the proposed method is in red, and the ONI index is in black.
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mechanisms. As indicated by Palmer and McNeall

(2014) and Taylor et al. (2012), the timing of an unforced

variability such as ENSO only matches observations by

coincidence. Thus, it remains to be observed whether

the temperature field obtained from the CMIP5 data in

the EnOI-DE/CMIP5 method represented the correct

timing of an unforced variability such as ENSO. Here,

ENSO will be indicated by the Niño-3.4 index.

The global SST time series presented in section 7b has

already shown that the interannual variability in the

reconstructed SST field agreed with the observations.

Figure 11b shows a further calculation of the Niño-3.4
index by using the reconstructed field compared to the

index obtained with the Niño-3.4 index provided by

oceanic Niño index (ONI) from NOAA. The two in-

dexes are almost identical (R . 0.8), indicating that the

timing of the ENSO variability was well represented by

the reconstructed field. However, we note here that the

reconstruction based on temperature anomaly field after

subtracting 12 monthly climatologies is difficult to un-

biased catching ENSO, because ENSO is phase locking

in season (always get to the peak in winter) and asym-

metric between its positive and negative phase. This

leads to the residuals of ENSO signals in the monthly

climatology, which potentially bias the representation of

ENSO in the anomaly field. How well the reconstructed

field in this study in representing ENSO compared with

the existing methods requires a more comprehensive

study in the future, which is out of scope of this study.

d. Reconstruction of decadal variability (PDO)

Decadal variability is another important feature of the

climate system. The interdecadal Pacific oscillation

(IPO) is one of the predominant signals of climate var-

iability on a decadal scale (Zhang et al. 1997), which is

responsible for the recent ‘‘climate hiatus’’ that has been

documented in many recent studies (Meehl et al. 2011;

Kosaka and Xie 2013; Meehl et al. 2013; Trenberth and

Fasullo 2013; England et al. 2014; Trenberth et al. 2014b;

Cheng et al. 2015a; Trenberth 2015). Therefore, we

calculated the first empirical orthogonal function (EOF)

mode of the Pacific SST field within 308S–458N. The

spatial pattern of the first EOFmode is shown in Fig. 13a

and displays a horseshoe pattern that includes a maxi-

mum positive signal in the eastern Pacific Ocean in low

latitudes and two negative centers in middle latitudes in

both hemispheres. This pattern is well documented in

the literature and reveals the low-frequency variability

of the air–sea interactionmode in the PacificOcean. The

time series of this mode are presented in Fig. 13b,

FIG. 12. Correlation of temperature change between HadISST and the reconstructed 10-m

ocean temperature field in this study. The correlation is calculated in each 18 3 18 grid (a) from

1940 to 2014 and (b) from 1970 to 2014.
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appearing as a negative phase during the 1950–75 and

1998–2014 periods and as a positive phase during the

1976–97 period. For comparison, the IPO index pro-

vided by the Met Office Hadley Centre (Folland et al.

2002) and the Pacific decadal oscillation (PDO) index

provided by Zhang et al. (1997) are also shown in

Fig. 13b. The three time series are consistent with each

other, indicating that the IPO (or PDO) signal can be

reconstructed well by the new approach.

8. The reconstructed field and its uncertainties

Based on the evaluation as outlined in the previous

sections, we found that the EnOI-DE/CMIP5 map-

ping method showed robust improvement in the

reconstruction of the ocean surface and subsurface

temperature fields at different time scales. As indicated

in section 3, the uncertainties of the reconstructed field

can also be assessed, as represented by updating the

members of the ensemble.

For example, Fig. 11 displays the SST time series of

the ensemble members with their standard deviation in

pink. Larger errors are apparent at earlier times:60.28C
in 1960 compared with 60.058C in 2014. The reduction

of such errors might be tied to both an increase in data

coverage and the improvement of the instrument quality

of the observations. Moreover, the uncertainty was

smaller during 1999–2005 than during the other periods

because the 1999–2005 climatology was used. The global

averaged anomalies for the different models were all

FIG. 13. (a) Spatial pattern and (b) time series of the first EOF mode (in red) of the re-

constructed temperature field at 10m in Pacific Ocean from 558S to 558N. The time series of the

first EOF mode is compared with PDO index shown in Zhang et al. (1997) and IPO index

provided by the Met Office Hadley Centre (Folland et al. 2002).
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approximately zero during this period, which led to a

smaller analysis error for the globally averaged metrics

such as the global SST.

Similarly, the 0–700-m-averaged temperature change

(representative of the OHC) was calculated from 1940

to 2014 using the proposed method together with the 40

(31 after 2006) ensemble members (gray curves) and the

standard deviation (pink curves) as shown in Fig. 14.

This estimate can be regarded as another independent

OHC estimate compared with the existing estimates

presented in Ishii et al. (2003), Willis et al. (2004), Smith

and Murphy (2007), Domingues et al. (2008), Palmer

and Haines (2009), Roemmich and Gilson (2009),

Levitus et al. (2012), Good et al. (2013), and Cheng et al.

(2015b). The new EnOI-DE/CMIP5 method resulted

in a long-term linear trend of 0.0034 6 0.00108Cyr21

(0.20 6 0.07Wm22 averaged over the global surface)

from 1940 to 2014 and 0.0052 6 0.00098Cyr21 (0.31 6
0.06Wm22) from 1970 to 2014. The three other in-

dependent estimates (Cheng et al. 2015b; Levitus et al.

2012; Balmaseda et al. 2013) are also shown in Fig. 14.

The new estimate from this study showed a slightly

weaker OHC trend compared with Cheng et al. (2015b;

;0.356 0.12Wm22) from 1970 to 2014 and Balmaseda

et al. (2013; ;0.30–0.34Wm22) from 1970 to 2009.

However, it showed a much stronger trend from 1970 to

2014 than Levitus et al. (2012; ;0.24Wm22). As in-

dicated by the tests in this study, the traditional pa-

rameterized methods (i.e., Ishii et al. 2003; Smith and

Murphy 2007; Levitus et al. 2012) most likely un-

derestimate the long-term trend because of the choice of

the first-guess field.

Moreover, the estimates by Cheng et al. (2015b),

NOAA/NODC, and this study show a very similar in-

terannual oscillation, although the magnitude is not

consistent. The interannual variation of the upper OHC

is linked to the ENSO variation as investigated in

Roemmich and Gilson (2011) by using Argo data since

2004. Moreover, a strong OHC shift from 2001 to 2003

was shown in Levitus et al. (2012), to be partly (nearly by

half) spurious, which was caused by the change in the

observation system from a ship-based system to the

Argo system (Cheng and Zhu 2014a). As indicated in

Fig. 14, the net temperature change within 2001–03 is

FIG. 14. Historical upper 0–700-m ocean heat content change (in values of 0–700-m-averaged

temperature anomaly) using the proposed method: ensemble mean is shown in red and 40

ensemble members (31 after 2006) in gray. Plus and minus one standard deviation is shown in

pink. The yellow curve shows the monthly mean, and the red curve is the smoothed time series

by a 12-point running smoother. The new estimate is compared with three independent esti-

mates of Levitus et al. (2012) in blue (NODC), Cheng et al. (2015b) in black (CH15), and

Balmaseda et al. (2013) in green (ORAS4). The black arrows denote the volcano eruptions:

Mount Agung in 1963, El Chichón inMarch–April 1982, andMount Pinatubo in June 1991. All

of the time series are referenced to 2005.
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lower by half in both Cheng et al. (2015b) and in this

study, comparedwith Levitus et al. (2012). Furthermore,

the OHC changes forced by three major volcano erup-

tions are apparent in the reconstructed field: Mount

Agung in 1963, El Chichón in March–April 1982, and

Mount Pinatubo in June 1991.

The calculation of the geographical distribution of the

long-term change in the ocean heat content is also

valuable. Figure 15 shows the linear trend of the tem-

perature change at 10m from 1970 to 2014 compared

with that based on HadISST, and the zonal average

temperature change at each depth from 1 to 700m. The

sea surface temperature field shows large-scale warming

over the global ocean, indicating signals of anthropo-

genic forcing. More rapid warming of the poleward

flowing western boundary currents such as the East

Australian Current and the Kuroshio can be detected

(Wu et al. 2012).

The zonal trend of temperature change shown in

Fig. 15c reveals the modification of the ocean circulation

and the downward transportation of heat. The large-

scale warming from 108 to 408N and from 208 to 508S
indicates the downward transport of warming by sub-

tropical cells (Levitus et al. 2009; Rhein et al. 2013) and

is consistent with poleward displacement of the mean

temperature field. The stronger warming within 508–
408S might be linked to the poleward displacement of

the ACC and the southern limb of the subtropical gyres,

as illustrated byGille (2008) andAlory et al. (2007). The

weak warming (or slight cooling) at depths between 208S
and 108N has also been shown by previous studies (i.e.,

Rhein et al. 2013) and is consistent with a southward

shift of cooler water near the equator. This is probably

because of the strengthening of the shallow subtropical

cell due to the intensifying tropical trade winds since

1990s (England et al. 2014). The cooling of the Southern

Ocean is apparent at the upper 100m, consistent with

the recent increase of sea ice coverage.

9. Concluding remarks

In the latest IPCC report (Rhein et al. 2013), the

available upper-ocean heat content estimates from

1970 to 2010 show large differences ranging from 74

TW (Smith and Murphy 2007) to 137 TW (Domingues

et al. 2008), implying a large uncertainty of calcula-

tion. The community has made a great effort to reduce

the errors in the OHC calculation as documented in

the literature. Among these efforts are the removal of

XBT biases (Abraham et al. 2014; Cowley et al. 2013;

Levitus et al. 2009; Schwalbach et al. 2014; Shepard

et al. 2014; Cheng et al. 2016), the selection of an ap-

propriate climatology (Lyman and Johnson 2014;

Cheng and Zhu 2015), the removal of errors due to the

insufficient vertical resolution of the data (Cheng and

Zhu 2014b), and the proposal of new mapping

methods (Lyman et al. 2010; Levitus et al. 2012). In

this study, we have focused on a new mapping strategy

motivated by the deficiencies in some of the available

methods: 1) the choice of climatology (zero anomaly)

as the first-guess leads to an overreversion of the OHC

estimate toward zero, and 2) the parameterized error

covariance is empirical and might not work well for

some regions such as the boundary current regions.

Based on this motivation, our new strategy uses an

ensemble of CMIP5 models to provide the first-guess

field and error covariance and shows better perfor-

mance in reconstructing the historical ocean sub-

surface temperature field.

However, we do not claim that this method is the

best because it is still unclear whether it can perfectly

fill the data gaps in the historical dataset. The diffi-

culty is that no independent data for validation exist,

especially for the ocean subsurface. A potential

strategy to fully evaluate this method is the use of

several different synthetic datasets, such as high-

resolution models, sea level data, etc., which re-

quires further effort. Furthermore, comprehensive

and international collaborations are required in the

future to fully understand the performance of differ-

ent mapping methods.

It is worth noting here that a potential problem with

the new method is that the temperature field (and

global OHC) from the earlier eras (i.e., prior to 1960)

based on the EnOI-DE/CMIP5 method might slightly

revert to the ensemble mean of the CMIP5 model

outputs. Therefore, the accuracy of this method might

depend on the performance of the CMIP5 models, and

future improvements of the models will positively feed

back to the reconstruction of historical subsurface

temperature field.

It is also noteworthy that further applications of the

proposed strategy include the reconstruction of the

deeper ocean temperature field below 700m because

increasingly more evidence suggests the importance of

the deeper ocean in Earth’s energy budget (Balmaseda

et al. 2013; Palmer et al. 2011; Purkey and Johnson 2010;

Trenberth et al. 2014a). However, the difficulty is that

deeper oceanmeasurements are even sparser than those

for the upper ocean because most of the XBT in-

struments have a maximum depth of 700–750m. An-

other possible application is the reconstruction of the

ocean subsurface salinity field, which plays an important

role in monitoring the sea level rise (Church and White

2011; Church et al. 2011; Durack et al. 2014b) and the

water cycle (Durack et al. 2012).
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