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ABSTRACT

Four data assimilation scheme combinations derived from two strategies and two optimization algorithms

[the ensemble Kalman filter (EnKF) and the shuffled complex evolution method developed at The University

of Arizona (SCE-UA)] are developed based on the Common Land Model (CLM) to improve predictions of

water and heat fluxes. The first strategy is constructed through adjusting the soil temperature, while the

second strategy adjusts the soil moisture. Moderate Resolution Imaging Spectroradiometer (MODIS) land

surface temperature (LST) products are compared with ground-measured surface temperature, and assimi-

lated into the CLM. The relationship equation between the MODIS LST products and CLM surface tem-

perature is taken as the observation operator and the root-mean-square error (RMSE) is applied as the

observation error. The assimilation results are validated by measurements from six observation sites located

in Germany, the United States, and China. Results indicate that the developed data assimilation schemes can

improve estimates of water and heat fluxes. Overall, strategy 2 is superior to strategy 1 when using the same

optimization algorithm. The EnKF algorithm performs slightly better than the SCE-UA algorithm when

using the same strategy. Strategy 2 combined with the EnKF algorithm performs best for water and heat

fluxes, and the reductions in the RMSE are found to be 24.0 and 15.2 W m22 for sensible and latent heat

fluxes, respectively. The joint assimilation of the MODIS LST and soil moisture observations can produce

better results for strategy 2 with the SCE-UA. Since preprocessing model parameters are used in this study,

the uncertainties in the model parameters may have resulted in suboptimal assimilation results. Therefore,

model calibrations should be conducted in the future.

1. Introduction

The accurate estimation of water and heat fluxes is

crucial to climate change research, water resource plan-

ning and management, and water-saving agriculture ap-

plications. A number of methods have been developed

to estimate water and heat fluxes. Ground measurements

are relatively accurate at the patch scale. However, the

monitoring network for ground measurements is not

sufficient for global coverage, and there is a need to up-

scale observations from the patch to the regional scale.

The remote sensing method can acquire land surface in-

formation accurately at the regional scale, which creates

new opportunities for monitoring water and heat fluxes

(Bastiaanssen et al. 1998; Su 2002; Liu et al. 2007). Since

remote sensing data are instantaneous, estimating the

daily, monthly, and annual flux values may cause errors.

Over the last 20 yr, evolving land surface models have

been able to produce continuous temporal and spatial

variations of water and heat fluxes (Dickinson et al. 1986;

Sellers et al. 1996; Dai et al. 2001, 2003). This has had

a significant impact on our understanding of regional

energy and water balances. However, the land model
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output is strongly contaminated by uncertainties within

the model parameters, model structures, and forcing

data; this has adversely affected the development and

application of land surface models.

Considering these issues, developing a series of tech-

niques combining land surface models with different

types of observations is necessary. Data assimilation is

one such technique and is one of the most advanced ap-

proaches to improving land surface model predictions

(Margulis et al. 2002). Recently, there has been signifi-

cant renewed interest in data assimilation techniques

(Crow and Wood 2003; Liang 2004; Liang and Qin 2008).

A number of past studies have developed several tech-

niques to assimilate microwave brightness temperature

into land surface and hydrological models with the goal

of improving soil moisture estimates (Galantowiez et al.

1999; Reichle et al. 2002; Crow and Wood 2003; Yang

et al. 2007; Qin et al. 2009).

Surface temperature has been established to be a key

factor for water and energy balance studies. Surface tem-

perature influences the partitioning of incoming radiant

energy into ground, as well as sensible and latent heat

fluxes. Overestimating the surface temperature results

in excessive estimates of sensible and soil heat fluxes,

which can impact the boundary layer development and

atmospheric dynamics. Underestimating the results has

corresponding adverse effects. Although latent heat flux

is mainly affected by soil moisture, surface temperature

is an important parameter too. Therefore, researchers

have conducted numerous experiments to assimilate sur-

face temperature observations into land surface models.

Kumar and Kaleita (2003) and Huang et al. (2008) illus-

trated that remotely sensed radiometric temperatures can

enhance the prediction of the soil temperature profiles.

Crow et al. (2008) assimilated a thermal remote-sensing-

based soil moisture proxy into a water balance model and

improved the prediction of the root zone soil moisture.

To obtain surface energy balance components, a small

number of studies have developed a variational method

of combining relatively simple models with surface tem-

perature observations (Boni et al. 2001; Caparrini et al.

2004). Pipunic et al. (2008) conducted a comparative syn-

thetic study to test the potential of assimilated remotely

sensed data in improving water and heat flux predictions.

The purpose of most data assimilation experiments is

to correct soil moisture and soil temperature profiles.

Only a few studies have focused on obtaining accurate

water and heat flux predictions by assimilating surface

temperatures like those introduced above. However, these

results are largely unverified, and more research is needed

to determine if, and how well, assimilation of Moderate

Resolution Imaging Spectroradiometer (MODIS) land

surface temperature (LST) products can improve the

predictions of water and heat fluxes from land surface

models. There is also a need to know whether the as-

similation results are distinct by adjusting disparate

state variables with different optimization algorithms.

This study developed two data assimilation strategies

that combine the MODIS LST products with the Com-

mon Land Model (CLM). Strategy 1 improves water and

heat flux estimates by adjusting soil temperature, while

strategy 2 achieves this goal by adjusting soil mois-

ture. Two optimization algorithms, namely the ensemble

Kalman filter (EnKF) and the shuffled complex evolu-

tion method developed at The University of Arizona

(SCE-UA), were applied in the two strategies. Thus,

four data assimilation scheme combinations derived from

the two strategies and two optimization algorithms were

developed. The assimilation results were validated at six

observation sites with different land cover types (grass-

land, cropland, and orchard) located in Germany, the

United States, and China.

This paper is organized as follows. Section 2 intro-

duces the model operator, observation operator, and the

two data assimilation strategies and two optimization

algorithms. Section 3 discusses the experiment, includ-

ing the description of observation sites, MODIS data,

and model input data. Section 4 presents the results, in-

cluding (i) the determination of the model and observa-

tion errors and (ii) the results of assimilating the MODIS

LST products. Section 5 provides the summary and dis-

cussions.

2. Methodology

The developed data assimilation system consists of

a model operator for calculating the diurnal variations in

water and heat fluxes, an observation operator for pre-

dicting surface temperature from model state variables,

and an optimization scheme for optimizing the state

variables, all of which are described below.

a. Model operator

This study used the CLM as the model operator. The

CLM was proposed by Dai et al. (2001, 2003), and it

combines physical, hydrological, and biological processes

that can simulate soil temperature, soil moisture, water

and heat fluxes, and other variables. In the CLM, every

surface grid cell is divided into up to 5 tiles with the fol-

lowing fractions: dominant vegetation, secondary vege-

tation, bare soil, wetland, and inland water. The CLM

has 1 vegetation layer, 10 unevenly spaced vertical soil

layers, and up to 5 snow layers (depending on snow

depth). In addition, it includes a canopy photosynthesis-

conductance model (two broadleaf models) used to
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quantify the transfer of CO2 and water vapor into and

out of vegetation.

In the CLM, water and heat fluxes are calculated by

solving the soil–vegetation–atmosphere energy balance

equation. In the case of a nonvegetated surface, the en-

ergy balance equation is as follows:
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where Rn,g is the net radiation at the soil surface (W m22);

Hg, LEg, and Gg are the sensible, latent, and soil heat

fluxes, respectively, at the soil surface (W m22); and Tg is

the temperature at the soil surface (K). The sensible

and latent heat fluxes are dependent on the tempera-

ture and moisture at the soil surface and can be ob-

tained as follows:
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Here, ratm is the density of atmospheric air (kg m23), Cp

is the specific heat of air at constant pressure (equal to

1012 J kg21 K21), uatm is the air temperature (K), and rah

is the aerodynamic resistance to heat transfer (s m21):
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where qatm is the atmospheric specific humidity (kg kg21),

qg is the specific humidity of the soil surface (kg kg21),

raw is the aerodynamic resistance to water vapor transfer

(s m21), qsat
Tg is the saturated specific humidity at the soil

temperature Tg (kg kg21), hr is the relative humidity of

the ground surface air (–), C is the soil matrix potential

(mm), g is the gravity constant (m s22), and Rw is the gas

constant for water vapor (J kg21 K21).

In the case of a vegetated surface, the sensible and

latent heat fluxes are partitioned into canopy and soil

fluxes that depend on the canopy and soil temperatures.

The energy balance equation can be described as follows:
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where Rn,c is the net radiation of the vegetation canopy

(W m22); Hc and LEc are the canopy sensible and latent

heat fluxes, respectively (W m22); and Tc is the canopy

temperature (K). Because of the coupling between the

canopy temperature and canopy fluxes, the Newton–

Raphson iteration is used to solve them simultaneously

using the soil temperature from the previous time step.

In this case, the sensible heat flux from the canopy and

soil can be obtained as follows:
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Here, ca
h, cg

h, and cv
h are the sensible heat conductance

from the canopy air to the atmosphere, ground to canopy

air, and leaf surface to canopy air, respectively (m s21).

The latent heat flux from the canopy and soil can be ob-

tained as follows:

LE
c
5�r

atm
[cw

a q
atm

1 cw
g q

g
� (cw

a 1 cw
g )q

Tc
sat]

cw
v

cw
a 1 cw

v 1 cw
g

and (10)

LE
g
5�r

atm
[cw

a q
atm

1 cw
v q

T
c

sat � (cw
a 1 cw

v )q
g
]

3
cw

g

cw
a 1 cw

v 1 cw
g

,
(11)

where qTc
sat is the saturated specific humidity at the can-

opy temperature Tc (kg kg21) and ca
w, cg

w, and cv
w are the

latent heat conductance from the canopy air to the at-

mosphere, soil to canopy air, and leaf surface to canopy

air, respectively (m s21).

b. Observation operator

In this study, the component temperature decomposi-

tion method was selected to relate surface temperatures

from the CLM to the MODIS LST products (Anderson

et al. 2005):

T4
RAD(u) ’ f (u)T4

c 1 [1� f (u)]T4
s , (12)

where TRAD is the surface radiometric temperature (K),

Tc is the canopy radiometric temperature (K), Ts is the

ground radiometric temperature (K), f is the fractional

vegetation cover (–), and u is the view zenith angle of

sensors (8). The fractional vegetation cover can be ex-

pressed as follows:

f (u) 5 1� exp[�0.5F/cos(u)], (13)

where F is the leaf area index (LAI) from the MODIS

LAI products. The MODIS LST products can be expressed
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as a hybrid of the canopy and soil temperatures from the

CLM, so Eq. (12) can be rewritten as

TLST(u) 5 f (u)«
C

T4
Creal 1 [1� f (u)]«

S
T4

Sreal

� �
/«

CS

� �0.25
,

(14)

where TLST is the MODIS LST product (K); TCreal and

TSreal are the canopy and soil temperatures (K), re-

spectively, from CLM; «CS is the site emissivity (mixed

emissivity of soil and canopy of test site), with values of

0.987 for grassland and cropland (Wang et al. 2008) and

0.978 for orchards (Valor and Caselles 1996); and «C and

«S are the pure emissivities of the canopy and soil with

values of 0.99 and 0.96, respectively (Valor and Caselles

1996).

Equation (14) was determined to be the observation

operator of the data assimilation system. This observa-

tion operator relates CLM state variables to the MODIS

LST products, which can be applied to both point and

regional-scale assimilation tests.

c. Data assimilation strategies

In this study, two data assimilation strategies were

developed to assimilate the MODIS LST products. Strat-

egy 1 improves the estimation of water and heat fluxes

by adjusting soil temperature, while strategy 2 adjusts

the soil moisture.

1) STRATEGY 1

Equations (2)–(5), (8), and (9) indicate that soil tem-

perature is a key variable for water and heat fluxes. The

dynamics of soil temperature are assumed to obey the

following heat diffusion equation:

c
›T

›t
5 � ›

›z
l

›T

›z

� �
, (15)

where c is the volumetric soil heat capacity (J m23 K21),

T is the soil temperature (K), t is time (–), l is the

thermal conductivity of soil (W m21 K21), and z is the

soil depth (m). In this strategy, the CLM can be con-

sidered to be a ‘‘black box’’ system and is therefore

described as follows:

X
k11

5 M(X
k
, a

k11
, b

k11
), (16)

where Xk11 and Xk represent the soil temperature pro-

files (K) at times k 1 1 and k, respectively; M(–) repre-

sents the model operator; ak11 represents the forcing

data at time k 1 1; and bk11 represents surface parame-

ters at time k 1 1.

Following this strategy, the state vector contains the soil

temperature profile, and the observation vector contains

the surface temperature. From Eq. (16), the soil temper-

ature profile at time k 1 1 can be changed by adjusting the

soil temperature profile at time k.

2) STRATEGY 2

As determined in Eqs. (3), (4), (10), and (11), soil

moisture is a key factor of latent heat flux. In the CLM,

when soil moisture increases, latent heat flux increases

and surface temperature decreases, and vice versa. The

other components of the energy balance equation change

accordingly. In the CLM, liquid soil water is assumed to

be governed by the following equation (Dai et al. 2003):

›W
liq

›t
5�›q

›z
� f

root
E

tr
1 M

il
, (17)

where Wliq is the mass of the soil water (kg), t is time, q is

the water flow within the soil (kg m22 s21), froot is the

root fraction (–), Etr is transpiration (kg m22 s21), and

Mil is the mass rate of the melting (positive) or freezing

(negative) of soil ice. The vertical water flow within the

soil is described by Darcy’s law.

In this strategy, the state vector contains the soil mois-

ture profile, and the observation vector contains the sur-

face temperature. Therefore, soil moisture can be adjusted

by changing the soil moisture at the previous time step.

d. Optimization algorithms

In this study, two different optimization algorithms were

applied for the two strategies: the EnKF and SCE-UA.

1) ENKF

The Kalman filter (KF) method was first proposed

by Kalman (1960) and is used for linear dynamic sys-

tems. The extended Kalman filter (EKF) was proposed

(Jazwinski 1970) for nonlinear systems. It is based on

the first-order linearization and is cumbersome when

applied to complex problems. Evensen (1994) proposed

the EnKF to circumvent the problematic integration of

the EKF for more complex problems. According to

Epstein’s theory of stochastic dynamic prediction, the

EnKF calculates the state prediction error covariance

through the Monte Carlo method. It has been widely

applied due to its ease of implementation. A brief algo-

rithm summary is provided to explicate the implementa-

tion of the EnKF (Huang et al. 2008).

At the beginning of the algorithm, the first-guest value

X0, model parameters bk11, and background error co-

variance P0 are determined according to prior knowl-

edge. The initial state variable ensemble can be obtained

by adding random noises to X0:

X
i,0

5 X
0

1 u
i

u
i
; N(0, P

0
), (18)
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where mi is the background error vector, which conforms

to the Gaussian distribution with a zero mean and a co-

variance matrix of P0. CLM state variables then proceed

by adding i (i represents the ensemble member) number

of random noises to Eq. (16), which conforms to the

Gaussian distribution. This is expressed by the following

equation:

X
f
i,1 5 M(Xi,0, a

1
, b

1
) 1 w

i
w

i
; N(0, Q

1
), (19)

where X
f
i,1 represents the forecasted state variables of

the ith member at time 1, the superscript f means the

forecasted state variables, wi is the model error vector

and conforms to a Gaussian distribution with a zero mean

and a covariance matrix Q, and Q is the model error.

When no MODIS LST exists, CLM state variables

proceed using the following equation:

X
f
i,k11 5 M(X

f
i,k, a

k11
, b

k11
) 1 w

i
w

i
; N(0, Q

k
), (20)

where X
f
i,k and X

f
i,k11 represent the forecasted state var-

iables of the ith member at times k and k 1 1, respectively.

The X
f
i,k11 remains a single function of X

f
i,k. When using

the MODIS LST products at the time k11, the observa-

tion operator predicts the surface temperature as follows:

Y
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5 H(X
f
i,k11) 1 v

i
v

i
; N(0, R
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), (21)

where Yi,k11 is the surface temperature of the ith mem-

ber at the time k 1 1, H(–) represents the observation

operator, vi is the observation error that conforms to a

Gaussian distribution with a zero mean and a covariance

matrix Rk11, and Rk11 is the observation error. The

calculation of the model and observation errors is in-

troduced in section 4. The number of state variables is

updated as follows:
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where Xa
i,k11 represents the analyzed state variables of

the ith member at the time k 1 1, Kk11 is the Kalman

gain matrix at the time k 1 1, Y0
k11 is the MODIS LST

product at the time k 1 1, P
f
k11 is the forecasted back-

ground error covariance matrix at the time k 1 1, HT is

the transposed matrix of the observation operator, N is

the number of ensembles, X
f

i,k11 is the mean value of

forecasted state variables at the time k 1 1, [�]T represents

the transposed matrix, H(X
f
i,k11) is the surface tempera-

ture of the ith member at the time k 1 1 , and H(X
f

k11) is

the mean value of the CLM surface temperature at the

time k 1 1.

2) SCE-UA

Although the EnKF works well for some nonlinear

systems, it may perform poorly in some cases where the

true posterior is non-Gaussian (Evensen 1997). As there

may be a highly nonlinear relationship between soil tem-

perature (and soil moisture) and surface temperature, the

initial Gaussian probability density function (PDF) can

lead to a non-Gaussian PDF. Therefore, we applied an-

other type of optimization algorithm to our data assimi-

lation tests.

In our data assimilation strategies, our objective was

to minimize the differences in the simulated and ob-

served surface temperatures, which can be expressed by

the following equation:

J(x) 5 jTobs
s � Tsim

s j, (27)

where J is the cost function, Ts
obs is the observed surface

temperature (MODIS LST products), and Ts
sim is the

surface temperature calculated with Eq. (14). To mini-

mize this cost function, the SCE-UA (Duan et al. 1993)

was used to obtain the optimal control vector, which

does not require the derivatives of the model and can

avoid being corrupted by small pits and bumps on the

function surface. The SCE-UA search routine is a global

optimization strategy that combines the strength of the

simplex method with the concept of a controlled random

search, competitive evolution, and the strategy of com-

plex shuffling. The synthesis of these four concepts makes

the SCE-UA method more effective, robust, flexible, and

efficient, although it is less sensitive to the initial values of

parameters than the simplex method.

When no MODIS LST exists, the SCE-UA algorithm

is not launched. When confronted with the MODIS

LST, the SCE-UA algorithm is applied to minimize the

cost function Eq. (27) in the current step. In the SCE-UA

algorithm, the upper and lower bounds of the state vari-

ables should be determined by the following equations:

X
lower

5 max(X
min

, X
sim
� DX) and (28)
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X
upper

5 min(X
max

, X
sim

1 DX), (29)

where Xlower and Xupper are the lower and upper bounds

of the state variables, respectively; Xmin and Xmax are

the minimum and maximum values of the state variables,

respectively; Xsim is the simulated state variable; and DX

is the uncertainty in the state variables.

In this study, Xmin and Xmax were 260 and 320 K, re-

spectively, for soil temperature profiles and were used as

the wilting point and porosity for soil moisture profiles

(Pipunic et al. 2008). The uncertainty in state variables,

DX, can be determined by the root-mean-square-error

(RMSE) values of soil temperature and moisture as cal-

culated in section 4.

Figures 1 and 2, respectively, depict flowcharts of strat-

egy 1 with the EnKF and strategy 2 with the SCE-UA,

which can improve the estimation of water and heat

fluxes by adjusting the model state variables.

3. Data collection and processing

a. Site description

The data assimilation experiments were conducted at

six observation sites: Lindenberg, Germany; Bondville,

Illinois, and Goodwin, Mississippi, United States; and

TongYu, GuanTao, and MiYun, China. These sites are

covered with grasses, crops, and orchards; the details are

given in Table 1. Data from the Lindenberg and TongYu

sites are sourced from the Coordinated Enhanced Ob-

serving Period (CEOP), and the details are shown online

(www.ceop.net). Data from the Bondville and Goodwin

sites are sourced from FLUXNET (information available

online at www.fluxnet.ornl.gov/fluxnet/index.cfm). Details

for the GuanTao and MiYun sites are summarized in

Table 2. The surfaces for most of the sites are smooth and

even, and the MiYun site is located in a valley (approxi-

mately 500–1000 m 3 2420 m) in the Hai River basin in

China. In general, the meteorological data were typically

measured using a set of instruments mounted on a tower

for 30 min.

Continuous flux data measured by the eddy covari-

ance (EC) system were used as validation data in this

study, and the data were processed carefully by different

groups of primary investigators (PIs; i.e., Baldocchi et al.

2001). Taking the EC data measured in the GuanTao

and MiYun sites as an example, the procedure for pro-

cessing EC data includes spike detection, lag correction

of H2O–CO2 relative to the vertical wind component,

sonic virtual temperature correction, coordinating ro-

tation using the planar fit method, and corrections for

air density fluctuation [Webb–Pearman–Leuning (WPL)

correction; Webb et al. (1980)], frequency response cor-

rection, etc. An EdiRe (University of Edinburgh, infor-

mation online at http://www.geos.ed.ac.uk/abs/research/

micromet/EdiRe) software package was used for this

purpose. Furthermore, the half-hourly flux data were

screened via a two-step process: 1) measurements during

the periods of precipitation (including 1 h before and

after) were rejected and 2) measurements at night with

friction velocity u
*

, 0.1 m s21 were rejected (Blanken

et al. 1998).

Although the EC flux system is accepted as one of the

best methods for measuring surface fluxes (Baldocchi

et al. 2001), it has limitations. One of the biggest con-

cerns is the ‘‘energy imbalance’’ in applications of the

EC data, as observed in most experiments (Mauder et al.

2006; Oncley et al. 2007). The energy balance closure of

FIG. 1. Flowchart of data assimilation strategy 1.
FIG. 2. Flowchart of data assimilation strategy 2.
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the EC system was assessed at the test sites, and the en-

ergy balance ratio (EBR) is defined as

EBR 5 (H 1 LE)/(R
n
�G

0
), (30)

where H and LE are the sensible and latent heat fluxes,

respectively; Rn is the net radiation; and G0 is the surface

soil heat flux calculated following the method proposed

by Yang and Wang (2008). Table 3 summarizes the EBR

at the six sites and also demonstrates that an energy

imbalance was also observed at the test sites.

b. MODIS data

Two MODIS sensors, on board the Terra and Aqua

satellites have been launched for global studies of the

atmosphere, land, and ocean processes. The Terra over-

pass time is approximately 1030 local solar time (LST) in

its descending mode and 2230 LST in its ascending mode.

The Aqua overpass time is approximately 1330 LST in its

descending mode and 0130 LST in its ascending mode. In

this study, the standard MODIS products (MOD11A1,

MYD11A1, and MOD15A2) were used (collection 5)

and are available online (https://wist.echo.nasa.gov/api/).

The MODIS LST products provide the temperature

and emissivity values for each pixel. The generalized

split-window algorithm is used to retrieve the tempera-

ture from the MODIS thermal and middle-infrared spec-

tral regions (Wan and Dozier. 1996). Many validation

results have indicated that the MODIS LST at 1-km

resolution has an accuracy greater than 1 K in the range

of 263–300 K (Wan et al. 2002), although some cases

may have large errors (Wang et al. 2008). MOD11A1 and

MYD11A1 provide two land surface temperature values

(day and night) daily. Therefore, four MODIS LST ob-

servations are available daily with clear skies that can

be assimilated into the developed assimilation schemes.

MOD15A2 provides LAI values that are 8-day compos-

ites, and the values are incorporated into CLM directly.

All these products are stored in the hierarchical data for-

mat (HDF), which is a sinusoidal projection with a spatial

resolution of 1 km.

In addition, the MODIS products provide satellite

view time and quality control flag data. As the MODIS

data are often contaminated by clouds, only clear-sky

products (QC 5 0) are used. Table 4 shows the MODIS

LAI data at the six observation sites.

TABLE 1. Summary of the six observation sites.

Site name Country Lat Lon Elevation (m) Land cover Year

Lindenberg Germany 52.178N 14.128E 112.0 Grass 2005

Goodwin United States 34.258N 89.978W 70.0 Grass 2005

Bondville United States 40.018N 88.298W 300.0 Cropland 2006

TongYu China 44.428N 122.878E 184.0 Cropland 2004

GuanTao China 36.528N 115.138E 30.0 Cropland 2009

MiYun China 40.638N 117.328E 352.0 Orchard 2008

TABLE 2. Summary of instruments at GuanTao and MiYun sites.

Parameters

Instruments Height (m)

GuanTao MiYun GuanTao MiYun

Wind speed/direction WS03001; R. M. Young 12.7 10.66 and 30.56

Air temp/humidity HMP45C; Vaisala 4 and 12.5 10.66 and 30.56

Air pressure CS100; Campbell Scientific AV-410; Avalon

Precipitation TE525; Campbell Scientific Young-52203; R. M. Young

Radiation CNR-1; Kipp and Zonen 14.3 30.76

Soil heat flux HFP01; Campbell Scientific HFT-3; Hukseflux 0.02 0.02

IR temp IRTC-3; Avalon 15.7 30.56

Soil temp 107; Campbell Scientific 0.02, 0.05, 0.1, 0.2,

0.4, 0.6, 0.8, 1.0

0.02, 0.05, 0.1, 0.2,

0.4, 0.6, 0.8, 1.0

Soil moisture ECH2O-10; Decagon 0.02, 0.05, 0.1, 0.2,

0.4, 0.6, 1.0

0.02, 0.05, 0.1, 0.2,

0.4, 0.6, 1.0

Fluxes Eddy covariance system 15.6 26.66

(CSAT3, Campbell Scientific;

LI-7500, LI-COR)

Large aperture scintillometer 35.86 m (effective height)

and 2420 m (pathlength)

15.6 and 2760 m

(LAS, Kipp and Zonen)
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c. Model input data

The input data for the CLM include land surface type,

soil and vegetation parameters, and forcing data. The

CLM is designed to handle a variety of data sources.

Therefore, preprocessing of the data is necessary to take

advantage of the CLM datasets. Land cover types are

based on the International Geosphere–Biosphere Pro-

gramme (IGBP) classification system. Soil texture is

sourced from a global database according to the per-

centage of sand and clay. All the datasets are available

at a spatial resolution of 30 s. Thus, the soil thermal and

hydraulic properties can be calculated (Dai et al. 2001).

CLM contains both time-invariant and time-varying veg-

etation parameters. The former are constant values re-

lated to different vegetation types. LAI is a key parameter

of CLM and is sourced from the MODIS LAI products.

The input forcing data used in this study were taken from

a continuous series of half-hourly meteorological data at

the six observation sites. They consist of wind speed, air

temperature, relative humidity, air pressure, precipitation,

incoming shortwave radiation, and incoming longwave

radiation. Given the half-hourly temporal resolution of

meteorological forcing data, the model was run at half-

hourly time steps for all the experiments. The model state

variables (soil temperature and soil moisture) were ini-

tialized by ground measurements at the six sites.

4. Results and analysis

a. Quantifying model and observation errors

There are three primary types of factors that con-

taminate the model outputs: the model structure, un-

certainties in model parameters, and forcing data. When

observations are available on a continuous temporal

scale, model errors can be specified arbitrarily, as their

influence diminishes quickly during the process of in-

corporating the measurements. However, forecasted er-

rors are governed by the model errors as observations

are intermittent. One of the problems associated with

assimilating remote sensing measurements is that the

data are often cloud contaminated, such as MODIS

data, and therefore cannot be used. This results in use-

ful data being available at larger intermittent intervals

than desired. In these situations, it is important to obtain

proper estimates of the model errors. However, the model

error is the error in the model results, which is caused by

model deficiencies. Model errors may change over time

and space, and they are correlated with various model

state variables, which results in an unpredictable propa-

gation of model errors. Therefore, model errors are com-

plex and difficult to quantify.

The following equations can be used to describe the

difference between the model simulations and the ob-

servations:

MD 5 T
sim
� T

obs
and (31)

RMSE 5
1

N � 1
�
N

i51
(MD

i
�MD)2

2
4

3
5

0.5

, (32)

where MD is the model deviation; Tobs and Tsim are the

observed and simulated soil temperatures, respectively;

N is the sample number; and MD is the mean value of

the model deviation. As the soil temperature changes

rapidly in a single day, we create tables with 48 values of

each layer for the diurnal variations. Figures 3a–f depict

RMSE values for different layers of the soil temperature

profiles at the six experiment sites (these figures only

show the RMSE values of layers 1, 3, and 5). Figure 3g

shows the average RMSE values of the six experiment

sites, which were used to construct the error covariance

matrix in the data assimilation tests. These figures de-

pict the diurnal variations of the soil temperature RMSE

values, which attained the highest value of approximately

6 K at noon (Fig. 3g). The first layer values had obvious

diurnal variations, and the values decreased gradually

from the upper layers to the lower layers. Using the same

method, soil moisture RMSE value tables were devel-

oped for all the six sites (Table 5). As the soil moisture

changes slowly in a single day, the tables were created

with one daily value. Similarly, the average RMSE values

at the six experiment sites were used to construct the

error covariance matrix.

To obtain the observation errors, ground-measured

surface temperatures were used to validate the MODIS

LST products. Ground-measured surface temperatures

from the test sites were obtained from a radiometer usu-

ally mounted on a tower, which requires a correction for

the emissivity effect. Moreover, they are also affected by

TABLE 3. Summary of the EBRs at six sites.

Lindenberg Goodwin Bondville TongYu GuanTao MiYun

EBR 0.79 0.96 0.78 0.95 0.87 0.78

TABLE 4. MODIS standard LAI products from January (1) to

December (12) at six sites (m2m22).

Year 1 2 3 4 5 6 7 8 9 10 11 12

Lindenberg 2005 0.0 0.5 0.7 1.2 1.5 1.6 1.1 1.0 1.0 0.8 0.5 0.0

Goodwin 2005 0.3 0.3 0.5 1.6 2.0 1.8 2.2 1.0 1.5 1.2 0.6 0.3

Bondville 2006 0.4 0.3 0.3 0.5 0.5 2.3 4.9 2.4 0.9 0.5 0.2 0.3

TongYu 2004 0.0 0.0 0.0 0.2 0.2 0.3 0.6 0.9 0.8 0.5 0.0 0.0

GuanTao 2009 0.1 0.2 0.5 1.2 1.0 0.5 2.2 3.3 2.6 0.5 0.3 0.2

MiYun 2008 0.1 0.1 0.2 0.3 0.9 1.7 2.2 2.1 1.4 0.9 0.2 0.1
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FIG. 3. The per hour soil temperature RMSE

values for 30 selected days at six observation

sites.
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water vapor when ground instruments are mounted at

high altitudes. Therefore, the incoming longwave radi-

ation must be considered. Based on the thermal radia-

tive transfer theory, the outgoing longwave radiation at

the surface level depends on the land surface tempera-

ture, emissivity, and incoming longwave radiation (Liang

2004; Wang et al. 2008). Ground-measured surface tem-

peratures can be obtained as follows:

T
sfc

5 [F
u
� (1� «)F

d
]/«s

� �0.25
, (33)

where Fu is the surface outgoing longwave radiation

(W m22), Fd is the surface incoming longwave radia-

tion (W m22), « is the emissivity of experiment sites

(–), and s is the Stefan–Boltzmann constant (5.67 3

1028 W m22 K24).

The MODIS LST products were compared with the

ground-measured surface temperatures (Fig. 4). As

shown in Fig. 4, the MODIS LST products and ground-

measured surface temperature follow the same trend,

and the correlation coefficients (R2) for the Lindenberg,

Goodwin, Bondville, TongYu, GuanTao, and MiYun

sites were 0.936, 0.881, 0.944, 0.809, 0.962, and 0.936,

respectively, during the daytime and 0.977, 0.795, 0.876,

0.925, 0.903, and 0.827, respectively, during the night-

time. In addition, the MODIS LST products were lower

than the ground-measured surface temperatures, which

was particularly evident at the Goodwin and TongYu sites

during the daytime. The RMSE between the MODIS LST

products and the ground-measured surface temperature

was about 2–3 K, and it was lower in the daytime than at

night at most of the sites.

However, the deviation between the MODIS LST

products and the ground-measured surface temperatures

was caused by not only the quality of the MODIS LST

products but also different temporal scales (MODIS LST

is an instantaneous value, and the ground-measured tem-

perature is the mean value over 30 min) and spatial scales

(MODIS LST is a mean value over about 1 km 3 1 km,

and the ground-measured temperature is over tens of

square meters).

In addition, Fig. 4 indicates that it is feasible to up-

scale the ground-measured surface temperature for the

MODIS LST pixels by using a simple linearity equation

at the stations. The MODIS LST products were corrected

based on the linearity equations between the MODIS

LST products and ground-measured surface tempera-

tures. The RMSE values were identified as the observa-

tion errors of the data assimilation system for daytime

and nighttime and are listed in Table 6.

b. Assimilation of MODIS LST products

In this section, the results of the two data assimilation

strategies were validated and compared. The two opti-

mization algorithms (EnKF and SCE-UA) were com-

bined with the two strategies. Therefore, four different

combinations of two strategies with two optimization

algorithms were tested at the six experiment sites sep-

arately. Flowcharts of these two strategies are shown in

Figs. 1 and 2. The MODIS LST products were assimi-

lated into the CLM with the four combinations. The

RMSE was used to assess the assimilation results.

The simulation and assimilation results are shown in

Tables 7 and 8 and Figs. 5 and 6 for the test sites (taken

continuously for about 30 days at each site). Taking into

account the quality of the MODIS LST products and

validation data, data for the Julian day were selected

from 227 to 256 at Lindenberg in 2005, from 251 to 280 at

Goodwin in 2005, from 181 to 210 at Bondville in 2006,

from 211 to 240 at TongYu in 2004, from 123 to 152 at

GuanTao in 2009, and from 192 to 221 at MiYun in 2008.

Table 7 summarizes the RMSE values of the simulation

and assimilation results compared with the observations

at all sites. These results indicate that the estimates for

the surface temperature and water and heat fluxes were

improved by the two strategies and two optimization

algorithms. Overall, strategy 2 was superior to strategy 1,

and the EnKF algorithm performed slightly better than

the SCE-UA algorithm for the same strategy. Strategy 2

combined with the EnKF algorithm performed best for

water and heat fluxes, and the reductions in the RMSE

TABLE 5. Model error reference table for soil water contents at six sites (m3m23).

Layer Lindenberg Goodwin Bondville GuanTao TongYu MiYun Avg

1 0.032 0.030 0.045 0.043 0.036 0.033 0.036

2 0.031 0.024 0.035 0.041 0.035 0.031 0.033

3 0.029 0.028 0.040 0.029 0.035 0.032 0.033

4 0.028 0.036 0.028 0.047 0.034 0.030 0.034

5 0.027 0.038 0.012 0.045 0.036 0.030 0.032

6 0.020 0.046 0.007 0.040 0.037 0.030 0.030

7 0.007 0.037 0.006 0.070 0.037 0.030 0.032

8 0.004 0.036 0.006 0.032 0.037 0.027 0.024

9 0.004 0.036 0.006 0.032 0.037 0.027 0.024

10 0.004 0.036 0.006 0.032 0.037 0.027 0.024
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were 24.0 and 15.2 W m22 for sensible and latent heat

fluxes, respectively. Table 7 also summarizes the RMSE

of the simulation and assimilation results compared with

the observations for grasslands (two sites), croplands

(three sites), and orchards (one site).

Table 8 details the results at the six observation sites.

The simulation and assimilation results for the Lindenberg

(grassland) and GuanTao (cropland) sites are shown in

Figs. 5 and 6, respectively. In strategy 1, the most sig-

nificant reduction in RMSE was 3.7 K for the surface

temperature using the SCE-UA algorithm at the

GuanTao site. For sensible heat flux, the most significant

reduction was 24.4 W m22 with the EnKF algorithm at

the Lindenberg site. For latent heat flux, the most sig-

nificant reduction was 24.5 W m22 with the EnKF al-

gorithm at the Goodwin site. In strategy 2, the EnKF

algorithm achieved the most significant reductions in

RMSE values. For surface temperature, the most sig-

nificant reduction in the RMSE value was 4.0 K at the

GuanTao site. The sensible heat flux saw the most sig-

nificant reduction in its RMSE value at 48.1 W m22 at the

GuanTao site, and the latent heat flux was 27.8 W m22 at

the Goodwin site. Since latent heat flux is significantly

affected by soil moisture, strategy 2 is superior to

strategy 1, especially due to the improvements in the

latent heat flux estimates. Figure 6 shows an example

where the assimilation results of the latent heat flux

exhibited no improvements during several days at the

GuanTao site, while strategy 2 demonstrated signifi-

cant improvements.

To test the significance of reductions in RMSE values

through data assimilation, a paired t test was conducted,

and the results are shown in Table 9. The smaller P

values in the paired t test demonstrate the more obvious

significance of reductions. Table 9 shows that strategy 2

achieved more significant reductions than strategy 1,

and the EnKF algorithm showed more significance than

the SCE-UA when using the same strategy.

Figures 7a and 7b show the results for the MiYun site

on Julian day 217. The data assimilation curve refers to

strategy 2 with the EnKF algorithm. Although the data

assimilation scheme improved the surface temperature

predictions, the assimilation results for the sensible heat

flux may not perform better than the simulation. Equa-

tions (1), (8), and (9) indicate that sensible heat flux is

determined not only by the surface–air temperature dif-

ferences but also by aerodynamic resistance. To explain

this phenomenon, the surface–air temperature differ-

ences of the CLM and observations on Julian day 217

at the MiYun site are plotted in Fig. 7c, and aero-

dynamic resistances are plotted in Fig. 7d. The aero-

dynamic resistance is calculated according to the following

equation:

FIG. 4. Comparisons between MODIS LST products and

ground-measured surface temperatures (Tsfc) at six experiment

sites. (RMSE and R are the root-mean-square error and the cor-

relation coefficient between the MODIS LST and the ground-

measured surface temperatures, respectively.)
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where H is the sensible heat flux (W m22) and Tsfc is the

surface temperature (K). In Eq. (34), Tsfc and H are

model outputs used to calculate the aerodynamic re-

sistances of the CLM. Both Tsfc and H are ground mea-

surements (from a radiometer and EC system) used to

calculate the aerodynamic resistance observations.

Figure 7d shows that CLM overestimated the resistance

at this site, and oscillations at times close to sunset and

sunrise were caused by near-zero sensible heat fluxes.

The deviation between the simulated and observed

aerodynamic resistance also existed at other sites such as

Goodwin and TongYu (not shown). In the CLM, aero-

dynamic resistance was dominated by meteorological

data, surface conditions, and the parameterization scheme;

these need to be calibrated in the future.

Figure 5d also indicates that strategy 2 with the SCE-UA

algorithm is sensitive to the quality of the MODIS LST

products. As the MODIS LST products are often con-

taminated by clouds, clear-sky products (QC 5 0) are

not easily available. Moreover, because of difference in

the temporal and spatial scales of the ground mea-

surements and the MODIS LST products, the MODIS

LST products often have large errors (Fig. 4), which leads

to limited improvements of the assimilation results. On

Julian days 233, 234, 242, and 247, the assimilation results

agreed well with the observations, as the differences be-

tween the MODIS LST products and the ground mea-

surements were within 1 K. However, on Julian day 248,

the assimilation result for the sensible heat flux was

smaller than the observation, and the latent heat flux

was larger than the observation; the MODIS LST was

smaller than the ground-measured temperature. Finally,

on Julian days 231 and 232, the assimilation results were

similar to the simulation results due to the MODIS LST

being badly contaminated by clouds.

Therefore, the correct results may sometimes not be

obtained with the assimilation of only one dataset, and

the joint assimilation of the MODIS LST products and

soil moisture observations simultaneously may yield bet-

ter predictions. Thus, a simple experiment was conducted

to jointly assimilate both the MODIS LST products and

ground-measured surface soil moisture observations us-

ing strategy 2 with the SCE-UA. The lower and upper

bounds of the soil moisture variations can be defined as

X
lower

5 max(X
min

, X
obs
� DX) and (35)

X
upper

5 min(X
max

, X
obs

1 DX), (36)

where Xobs is the soil moisture observation.

The Lindenberg site was selected as a case study site,

and the assimilation results are shown in Fig. 8 (in this

TABLE 6. Regression equations and RMSEs between MODIS LST and ground-measured surface temperatures at six sites.

Daytime Nighttime

Regression equation RMSE (K) Regression equation RMSE (K)

Lindenberg Y 5 1.012X 2 1.108 2.46 Y 5 0.975X 1 7.308 0.94

Goodwin Y 5 1.250X 2 70.450 2.88 Y 5 0.826X 1 50.484 3.89

Bondville Y 5 0.972X 1 9.469 2.27 Y 5 0.872X 1 35.939 3.09

TongYu Y 5 0.814X 1 59.837 2.53 Y 5 0.957X 1 12.789 3.56

GuanTao Y 5 1.041X 2 12.058 1.76 Y 5 0.957X 1 14.105 2.67

MiYun Y 5 0.927X 1 20.862 2.63 Y 5 1.001X 2 0.541 3.76

TABLE 7. Summary of the simulation and assimilation results.

Tsfc (K) H (W m22) LE (W m22)

Sim 1st_E 1st_S 2nd_E 2nd_S Sim 1st_E 1st_S 2nd_E 2nd_S Sim 1st_E 1st_S 2nd_E 2nd_S

Total 4.0 3.2 3.1 2.7 3.1 48.4 35.7 41.0 24.4 31.6 62.7 54.3 57.2 47.5 53.1

Grass 2.7 2.3 2.2 2.5 2.5 37.2 22.9 28.5 20.8 30.1 67.7 44.4 55.3 41.6 48.6

Crop 4.7 3.5 3.2 3.1 3.5 55.6 45.4 48.6 27.1 34.8 57.0 56.9 53.9 45.4 51.3

Orchard 4.5 4.2 4.3 2.1 3.2 49.0 32.1 43.6 23.8 24.9 69.6 66.6 70.7 65.5 67.3

Tsfc, H, and LE 5 surface temperature, and sensible and latent heat fluxes, respectively.

Sim 5 simulation results.

1st_E 5 assimilation results of strategy 1 with the EnKF method.

1st_S 5 assimilation results of strategy 1 with the SCE-UA method.

2nd_E 5 assimilation results of strategy 2 with the EnKF method.

2nd_S 5 assimilation results of strategy 2 with the SCE-UA method.
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figure, assimilation_a means assimilation results without

soil moisture observations, while assimilation_b means

assimilation results with soil moisture observations).

Figure 8 shows that the assimilation_b curves of the water

and heat fluxes were closer to the observations than the

simulation and assimilation_a. Since the ground-measured

soil moisture was assimilated, the RMSE value decreased

from 25.5 to 21.4 W m22 for the sensible heat flux and

decreased from 45.9 to 43.9 W m22 for the latent heat flux.

5. Summary and discussion

In this study, four different data assimilation scheme

combinations derived from two strategies and two op-

timization algorithms (EnKF and SCE-UA) were de-

veloped based on the Land Surface Model (CLM) to

improve the estimates of water and heat fluxes. The

MODIS LST products were assimilated into the CLM.

The MODIS LAI products were used to update the LAI

in the CLM, which can accurately describe vegetation

variations.

Overall, the two strategies improved the estimates of

surface temperature and water and heat fluxes by ad-

justing the soil temperature and moisture, respectively.

Strategy 2 was superior to strategy 1 when using the same

optimization algorithm. The EnKF algorithm performed

slightly better than the SCE-UA algorithm when using

the same strategy. Strategy 2 combined with the EnKF

algorithm performed best for water and heat fluxes, and

the reductions in RMSE values were 24.0 and 15.2 W m22

for the sensible and latent heat fluxes, respectively. For

the results at the six experiment sites, the combination of

strategy 2 with the EnKF algorithm achieved the most

significant reductions in RMSE values. For surface tem-

perature, the most significant reduction in the RMSE

value was 4.0 K at the GuanTao site. The sensible heat

flux had the most significant reduction in its RMSE value

of 48.1 W m22 at the GuanTao site, and latent heat flux

reduction was 27.8 W m22 at the Goodwin site. The

paired t test indicates that strategy 2 shows more signifi-

cance of reductions than strategy 1, and the EnKF algo-

rithm shows more significance than SCE-UA using the

same strategy. Since latent heat flux is significantly af-

fected by soil moisture, strategy 2 is superior to strat-

egy 1, especially for improving latent heat flux estimates.

Figure 6 shows an example where the assimilation results

of the latent heat flux produced no improvements during

several days at the GuanTao site, while strategy 2 dem-

onstrated significant improvements.

Two different optimization algorithms were used to

assimilate The MODIS LST products, i.e., the EnKF and

SCE-UA. The EnKF algorithm performed slightly better

than the SCE-UA algorithm when using the same strat-

egy. Since the SCE-UA algorithm is relaunched when the

observations are available, it is computationally ineffici-

ent compared to the EnKF. In this study, only point-scale

tests were conducted, and it is computationally unafford-

able for the current computer system to apply this algo-

rithm on a large scale.

The CLM is designed to handle a variety of data

sources, and most of the model parameters were calcu-

lated with the preprocessing program in the CLM. Since

the datasets are available in a relatively coarse database

(30 s), there may be biases in water and heat flux sim-

ulations at the point scale. The relationship between the

surface temperature and water and heat fluxes is depen-

dent on a range of variables (e.g., soil–vegetation pa-

rameters and meteorological conditions). Uncertainties

in any one of these factors will result in suboptimal as-

similation results. Figure 7 shows an example where the

TABLE 8. RMSEs of the simulation and assimilation results at six sites.

Grass Cropland Orchard

Lindenberg Goodwin Bondville TongYu GuanTao MiYun

Tsfc (K) Sim 2.0 3.4 4.0 3.7 6.3 4.5

1st_E 1.5 3.0 3.4 3.5 3.7 4.2

1st_S 1.3 3.1 3.5 3.5 2.6 4.3

2nd_E 2.6 2.3 3.7 3.2 2.3 2.1

2nd_S 1.6 3.3 3.4 3.5 3.6 3.2

H (W m22) Sim 39.4 35.0 57.3 32.8 76.8 49.0

1st_E 15.0 30.9 35.8 29.6 70.9 32.1

1st_S 22.6 34.3 38.1 31.9 75.7 43.6

2nd_E 13.7 27.8 29.1 23.4 28.7 23.8

2nd_S 25.5 34.6 34.6 28.7 41.0 24.9

LE (W m22) Sim 56.2 79.1 53.3 37.3 80.5 69.6

1st_E 34.1 54.6 35.1 41.4 94.2 66.6

1st_S 54.8 55.8 42.6 38.1 80.9 70.7

2nd_E 30.9 52.2 38.7 31.1 66.5 65.5

2nd_S 45.9 51.3 37.8 40.8 75.4 67.3
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FIG. 5. Simulation and assimilation results at the Lindenberg site from Julian

days 227 to 255, 2005: (a) 1st_EnKF means strategy 1 with the EnKF algorithm,

(b) 1st_SCE means strategy 1 with the SCE-UA algorithm, (c) 2nd_EnKF

means strategy 2 with the EnKF algorithm, and (d) 2nd_SCE means strategy 2

with the SCE-UA algorithm; (top to bottom) Tsfc, H, and LE represent the

surface temperature, sensible heat flux, and latent heat flux, respectively.
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FIG. 6. As in Fig. 5, but at the GuanTao site from Julian days 123 to 151, 2009.
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assimilation results for sensible heat flux were worse

than simulation results, as the aerodynamic resistances

were overestimated. Table 8 also indicates that the most

significant reductions in RMSE values commonly took

place at the same site with the largest simulation RMSE

values, which may be caused by model biases. De Lannoy

et al. (2007) indicated that if the model has not been

calibrated will lead to bias in the model results, and

EnKF has a limit to tackle the problem of model biases

for the above problems, the models need to be calibrated

with in situ measurements since water and heat fluxes are

affected by not only soil moisture/temperature but also

model parameters. An autocalibration data assimila-

tion scheme should be developed; the model can then

be calibrated automatically using data assimilation tech-

niques. Furthermore, comparisons between different pa-

rameterization schemes should be conducted in the future,

as different schemes may give distinct model outputs.

In addition, the performance of strategy 2 is sensitive

to the quality of the MODIS LST products (Fig. 6d). As

the MODIS LST products are often contaminated by

clouds, clear-sky products (QC 5 0) are not readily avail-

able. Moreover, because of different temporal and spatial

scales, the MODIS LST products have large errors (Fig. 4),

which may result in limited improvements. Better assimi-

lation results were obtained by jointly assimilating the

MODIS LST and soil moisture observations (Fig. 8). For

these problems, LST retrieval algorithms need to be

TABLE 9. The P values of a paired t test between the simulation and

assimilation RMSEs.

1st_E 1st_S 2nd_E 2nd_S

Tsfc (K) 0.09 0.16 0.12 0.08

H (W m22) 0.02 0.08 0.01 0.03

LE (W m22) 0.24 0.23 0.01 0.08

FIG. 7. Diurnal variations of aerodynamic resistance at the MiYun site on Julian day 217, 2008: (a) surface tem-

perature, (b) sensible heat flux, (c) surface–air temperature differences, and (d) aerodynamic resistance. The as-

similation curve refers to strategy 2 with the EnKF algorithm.
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improved, especially for complex land surfaces. More-

over, multisatellite data assimilation systems should be

developed to jointly assimilate remote sensing surface

temperature [MODIS, Advanced Very High Resolution

Radiometer (AVHRR), Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER), etc.] and

surface soil moisture retrievals [Soil Moisture and Ocean

Salinity Satellite (SMOS), Advanced Microwave Scanning

Radiometer for Earth Observing System (AMSR-E), etc.],

which may overcome the defects of one dataset. Mean-

while, studies on upscaling and downscaling should be

enhanced due to multisatellite data at different spatial

scales. On the other hand, assimilating water and heat flux

observations into land surface models directly can im-

prove the study of water and energy balances. In this

paper, the relationship equations between the surface

temperature from the CLM and MODIS LST products

are defined as the observation operator. The MODIS

LAI products were used in this observation operator,

which is helpful in the development of a regional data

assimilation system, but its applicability needs further

validation.

Finally, there were some measurement and represen-

tative errors within the observation instrument, which

may influence the validation results. For example, the

surface temperature simulation took the mean tempera-

ture over a few square kilometers, while ground-measured

temperatures may represent only tens of square meters.

Moreover, the EC system suffered from an energy im-

balance problem, which was observed in our experiments.

Therefore, studies on the energy imbalance problem

should be increased, which would also help improve the

data assimilation algorithm.
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