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Abstract. A Two-layer Surface Energy Balance Parameter-
ization Scheme (TSEBPS) is proposed for the estimation of
surface heat fluxes using Thermal Infrared (TIR) data over
sparsely vegetated surfaces. TSEBPS is based on the the-
ory of the classical two-layer energy balance model, as well
as a set of new formulations derived from assumption of the
energy balance at limiting cases. Two experimental data sets
are used to assess the reliabilities of TSEBPS. Based on these
case studies, TSEBPS has proven to be capable of estimating
heat fluxes at vegetation surfaces with acceptable accuracy.
The uncertainties in the estimated heat fluxes are comparable
to in-situ measurement uncertainties.

1 Introduction

Land surface Evapotranspiration (ET) is one of the most im-
portant components in the water cycle between the earth and
atmosphere, and plays a very important role in the atmo-
sphere, hydrosphere, and biosphere of the planet. It is an
urgent task to understand the evapotranspiration process over
different surface types and conditions in agriculture, hydro-
geology, forest, and ecology for the purpose of using water
resources properly. Additionally, land surface evapotranspi-
ration is a key parameter in the synoptic and climatic phe-
nomenon because of the heat and moment transfer processes
in association with evapotranspiration. Studies (Dickinson,
1984; Avissar, 1998) on climate models and general circula-
tion models (GCMs) have found that the climate is sensitive
to the change of land surface evapotranspiration. At present,
remote sensing may be the only efficient technical way that
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can be used to monitor surface evapotranspiration on the re-
gional scale (Mu et al., 2007; Stisen et al., 2008). Spatial
and temporal distributions of the key state variables of the
land surface energy balance can be provided by remote sens-
ing, and can be used to estimate surface evapotranspiration.
The data of mid-low resolution meteorology and the land re-
source satellite can cover large areas of the land surface and
can observe repeatedly in short periods, which is useful for
the research in the drought monitoring, climate changes, wa-
ter resource management, and so on.

Generally, surface evapotranspiration (i.e. latent heat flux
LE) is estimated as the residual term of surface energy bal-
ance equation. Remotely sensed data have been used suc-
cessfully over the past years to estimate the surface net radia-
tion and the soil heat flux (hence available energy) from com-
bined visible, near infrared and thermal infrared data (Nor-
man et al., 1995; Liang et al., 2000; Jacobs et al., 2000; Ma
et al., 2002; Ma, 2003). Therefore, the primary focus has
been the determination of the sensible heat flux based on the
spatially distributed surface temperature fields. The turbulent
heat fluxes models to estimate the sensible heat flux can be
categorized into two groups, single-source models and dual-
source models, according to whether or not the model sepa-
rates the foliage and the substrate soil. In the single-source
models, a so called “excess” resistance or parameterkB−1

is used to account for the difference between the remotely
sensed radiative surface temperatureTr and the aerodynamic
temperatureT0 (Moran et al., 1989; Kustas, 1990). The
difference betweenT0 andTr depends on a number of fac-
tors within the Soil-Plant-Atmosphere Continuum (SPAC) as
well as the viewing condition of the Thermal Infrared (TIR)
sensor. Therefore, it is very difficult to find out a robust re-
lationship that takes all these factors into account (Choud-
hury et al., 1986; Troufleau et al., 1997; Chehbouni et al.,
2001). Many authors (Blyth et al., 1995; Verhoef et al., 1997;

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


492 X. Xin and Q. Liu: TSEBPS for estimation of land surface heat fluxes

       
a                                                           b 

 

Fig. 1. Energy balance(a) and resistance network(b) of the two-
layer model.

Troufleau et al., 1997; Kustas et al., 1999; Massman, 1999)
have examined the features of thekB−1 parameter. This
parameter is a complex function of canopy structure, water
stress and environment factors, and it is too variable to pro-
vide a universal solution for estimating the sensible heat flux
using single-angle radiative surface temperature. This prob-
lem can be circumvented to some extent by using the dual-
source models. In this type of models, the heat fluxes of
the components (foliage and soil) are simulated individually,
and the aerodynamic temperature is analytically expressed in
terms of the component temperatures and a set of resistances,
as described in the two-layer model proposed by Shuttle-
worth and Wallace (1985) and revised by Shuttleworth and
Gurney (1990). This is very important for sparsely vegetated
surfaces, because in this circumstance the contribution of soil
surface cannot be neglected. Otherwise, the bias of the esti-
mated surface heat fluxes can be significant.

Even though the advantage of the dual-source models in
physics has been recognized by the scientific community,
the most widely used methods in applications are still based
on the assumption of the single source of the surface heat
fluxes. This results from such a fact that the use of the two-
layer model for operational purpose requires component sur-
face temperatures (i.e. soil and vegetation), which is still not
available from regular observations and retrieval of the most
space-borne remote sensors. Studies of applying the two-
layer model with traditional single-angle TIR data have been
reported since the model was proposed (Norman et al., 1995;
Jupp et al., 1998). Usually, this is achieved by simplifica-
tion of the model or adding an empirical relationship in the
model, which decreases the modeling accuracy or limits uni-
versal application.

In this study, we have developed a physics-based
Two-layer Surface Energy Balance Parameterization
Scheme (TSEBPS) for estimation of land surface heat
fluxes. We combined the two-layer model developed
by Shuttleworth and Wallace (1985) with techniques of
handling limiting cases as shown in Su (2002) and Norman
et al. (1995) to derive the Component Temperature Dif-
ference (CTD) under several extreme soil moisture states.

Additionally, a directional thermal radiative transfer model
is used to simulate the radiative surface temperature at
these states. Then an index is developed using the observed
surface temperature and the simulated temperature at the
extreme states. This index is then used to calculate the actual
sensible and latent heat fluxes of the foliage and soil surface.

2 TSEBPS (Two-layer Surface Energy Balance
Parameterization Scheme)

2.1 The Two-layer Surface Energy Balance model

The classical two-layer model by Shuttleworth and Wal-
lace (1985) founded the theory basis for this study (Fig. 1).
The surface energy balance is commonly written as

Rn − G = H + LE (1)

WhereRn is the net radiation,G is the soil heat flux,H is
the sensible heat flux, and LE is the latent heat flux (L is the
latent heat of vaporization andE is the actual evapotranspira-
tion). The net radiation of the surface (Rn) can be calculated
from the equation:

Rn = Sd(1−α) + εs Ld − Lu (2)

WhereSd are solar irradiation,α surface albedo,εs surface
emissivity, Ld downward atmosphere long wave radiation,
andLu surface emitted long wave radiation.G Can be cal-
culated with method used by Su (2002):

G = Rn · [0c + (1−fc) · (0s − 0c)] (3)

Where,0s=0.315 and0c=0.05, andfc fractional canopy cov-
erage.

The budget of the net radiation between soil and the
canopy can be calculated using the Beer’s law:

Rns = b(θ)Rn (4)

Rnv = Rn − Rns (5)

Where Rns and Rnv are the net radiation of soil and the
canopy, andb(θ) is the gap frequency of the canopy writ-
ten as

b(θ) = exp(−G(θ) · LAI /cosθ) (6)

Where,θ is the solar zenith angle, LAI leaf area index of the
canopy, andG(θ) projection coefficient of the leaves which
is related to the Leaf Angle Distribution (LAD). The energy
balance of the soil is written as:

Rns = Hs + LEs + G (7)

The energy balance of the canopy is written as:

Rnv = Hv + LEv (8)
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The basic principle underlying two-layer models is that the
two sources of water vapor and heat are superimposed and
hence heat and water vapor enter or leave the bottom layer
only via the top one. The total flux of sensible heat emanating
from the whole surface is the sum of the fluxes emanating
from each layer (here soil and vegetation). So there is

H = Hs + Hv = ρCp
[T0−Ta]

raa
(9)

where,ρ is the air density (kg m−3), Cp the specific heat
of air at constant pressure (J kg−1 K−1), T0 the aerodynamic
temperature (K) defined as the extrapolation of the air tem-
perature profile down to the apparent source/sink of heat
within the canopy,Ta air temperature (K) at the reference
height, andraa the aerodynamic resistance (s m−1) for heat
transfer. Hs and Hv are soil and vegetation sensible heat
fluxes, respectively, which can be expressed according to the
gradient-diffusion hypothesis as

Hs = ρCp
Ts − T0

ras

(10a)

Hv = ρCp
Tv − T0

rav

(10b)

Where,Ts and Tv are soil and vegetation temperature, re-
spectively,ras the aerodynamic resistance between soil and
the source height in the canopy, andrav the bulk boundary-
layer resistance of the vegetation. The transfer of the latent
heat flux in the canopy can also be expressed similarly as:

LE = LEs + LEv =
ρCp

γ
·
e0 − ea

raa
(11)

LEs =
ρCp

γ
·
e(Ts) − e0

rss+ ras
(12a)

LEv =
ρCp

γ
·
e∗(Tv) − e0

rst + rav
(12b)

where,γ is the psychometric constant (kPa K−1), e0 the aero-
dynamic vapor pressure of the surface,ea vapor of the atmo-
sphere, LEs and LEv soil and vegetation latent heat fluxes
respectively,e(Ts) ande∗(Tv) vapor pressure of soil surface
and the saturation vapor pressure in leaf stomata respectively,
rss, andrst soil surface resistance and leaf stomata resistance
respectively.

Aerodynamic resistanceraa is formulated using the stabil-
ity correction method by Choudhury (1989):

raa= ra0φ (13)

Wherera0 is the aerodynamic resistance in the neutral atmo-
sphere condition:

ra0 =

[
ln

(
z − d

z0

)]2

k2u
(14)

Whereu is the wind speed at the reference heightz, andk

von Karman’s constant. The corrective termφ is calculated
with:

φ =
1

(1 + η)p

〈
p = 2 Stable
p = 3/4 Unstable

η =
5g(z − d)(T0 − Ta)

Tau2

(15)

Whereg is acceleration due to gravity (ms−2). The zero
plane displacement heightd and the roughness length for
momentumz0 can be determined following Choudhury and
Monteith (1988), who fitted simple functions to the curves
obtained by Shaw and Pereira (1982) from the second-order
closure theory:

d = 1.1 h ln
[
1 + (cdLAI )1/4

]
(16)

z0 =

{
z0s + 0.3 h(cdLAI )1/2 0 ≤ cdLAI ≤ 0.2
0.3 h(1 − d/h) 0.2 < cdLAI ≤ 1.5

(17)

Where,cd is the mean drag coefficient assumed to be uni-
form within the canopy (0.2), andz0s the roughness length of
the substrate. For bare soil,z0s is taken as 0.01 m. The for-
mulations for resistancesras andrav proposed by Choudhury
and Monteith (1988) and Shuttleworth and Gurney (1990)
are used here:

rav = αw [w/u(h)]1/2/
{
4α0LAI

[
1 − exp(−αw/2)

]}
(18)

ras= h exp(αw){exp[−αwz0s/h] (19)

− exp[−αw(d + z0)/h]}/[αwK(h)]

Wherew is the leaf width,u(h) the wind speed at canopy
heighth, α0 andαw two constant coefficients equal to 0.005
(ms−1/2) and 2.5 (dimensionless), respectively. The value of
eddy diffusivity at canopy heightK(h) is determined with
K(h)=ku∗(h−d).

2.2 Parameterization scheme based on limiting cases

Figure 2 gives the flow chart of the parameterization. First
of all, the limiting cases of soil moisture in the Soil-Plant-
Atmosphere Continuum (SPAC) are defined, which are dry-
limit, wet-limit, and transition-state. The definitions of the
dry- and wet-limit are similar to those in SEBS (Su, 2002),
but differ in processing soil and foliage components individu-
ally. The transition-state occurs when the surface soil layer is
dry and the root zone soil is still wet, which is understandable
and predictable in natural vegetation because the drying-off
process after a rainfall or irrigation event starts from the sur-
face. Then the component temperature difference (CTD, i.e.,
Ts−Tv) at the limiting cases is derived based on the following
assumptions.

Under the dry-limit, the latent heat (or the evaporation
and transpiration) becomes zero due to the limitation of soil
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Fig. 2. Flow chart of the parameterization scheme of the two-layer models.

moisture and the sensible heat flux is at its maximum value.
From Eqs. (1), (7) and (8), it follows,

LEs,dry = 0
Hs,dry = Rns − G

(20)

and

LEv,dry = 0
Hv,dry = Rnv

(21)

The CTD under this case can be derived from Eq. (10).

δTdry = Ts,dry − Tv,dry =
1

ρCp
[(Rns − G)ras− Rnvrav] (22)

The aerodynamic surface temperature at dry-limitT0,dry can
also be calculated from Eq. (9) based on above assumption.
Hence, the soil and foliage temperatures under this caseTs,dry
andTv,dry can be calculated usingδTdry andT0,dry.

Under the wet-limit, where the evaporation and transpi-
ration take place at potential rates (i.e. the evaporation and
transpiration is limited only by the energy available under

the given surface and atmospheric conditions), the sensible
heat flux takes its minimum value.

LEwet = LEp (23)

The aerodynamic surface temperature at wet-limitT0,wet can
be calculated from Eq. (9) based on above assumption. The
component temperature difference between soil and foliage
can be derived based on the P-M type equation of soil and
the canopy and assuming the soil surface resistance and the
stomata resistance are zero, we have

Ts,wet =
(Rns−G)ras/ρCp−D0,wet/γ

1+1wet/γ
+T0,wet

Tv,wet =
Rncrav/ρCp − D0,wet/γ

1+1wet/γ
+ T0,wet

δTwet = Ts,wet − Tv,wet =
1

ρCp

[(Rns − G)ras − Rncrav]
1 + 1wet/γ

(24)

whereδTwet is CTD under the wet-limit,1wet is the slope of
the saturation vapor pressure versus the temperature, andγ

is psychrometric constant. Hence, the soil and foliage tem-
peratures under this caseTs,wet andTv,wet can be calculated
usingδTwet andT0,wet.
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Under the transition-state, where the evaporation becomes
zero due to the limitation of surface soil moisture, and the
transpiration is limited only by the energy available (i.e., root
zone soil moisture is still at wet-limiting). So there is:

LEs,trans= 0 (25)

and the transpiration is simulated using Priestly-Taylor equa-
tion.

LEv,trans= a · fg ·
1

1 + γ
Rnv (26)

where Priestly-Taylor constanta=2.0 according to Kustas et
al. (1999),fg is fraction of green leaves in the canopy. So the
aerodynamic surface temperatureT0,transand foliage temper-
atureTv,transunder this case can be calculated using Eqs. (9)
and (10), and the soil temperatureTs,trans under this case is
derived usingT0,transandTv,trans.

Based on the above assumptions and calculations, we
have the aerodynamic surface temperature under the limit-
ing cases,T0,dry, T0,wet, andT0,trans, and the soil and foliage
temperatures under the limiting cases,Ts,dry, Tv,dry, Ts,trans,
Tv,trans, and Ts,wet, Tv,wet . So we also have the sensible
and latent heat fluxes of the soil and foliage under the lim-
iting cases,Hs,dry, Hv,dry, LEs,dry, LEv,dry, Hs,trans, Hv,trans,
LEs,trans, LEv,trans, andHs,wet, Hv,wet, LEs,wet, LEv,wet based
on Eq. (10).

The next step is to derive the actual sensible and latent
heat fluxes of the soil and foliage using an interpolation
method from the limiting cases. We assume that the dry-
and wet-limit cases set reasonable boundaries of the surface
heat balance under limiting conditions, and the transition-
state gives a key spot where dramatic changes of the bud-
get of sensible and latent heat of the canopy take place (i.e.,
transpiration is at its maximum value and evaporation de-
creases between wet-limit and transition-state, and evapora-
tion is zero and transpiration decreases between transition-
state and dry-limit). Increasing or decreasing the soil and
foliage heat fluxes can bring about changes in the tempera-
tures of the soil and foliage, which can result in canopy sur-
face temperature changes. We have derived the component
temperatures under the limiting-cases, from which we simu-
lated the radiometric surface temperature under the limiting
cases,Tr,dry, Tr,wet, andTr,transusing a directional thermal in-
frared radiative transfer model of the canopy. In this study,
the model proposed by François (1997) was used to simulate
directional radiometric surface temperatures. In the simula-
tion, the observing zenith angle takes the actual angle in the
field measurement ofTr, and the soil and foliage emissivity
takes the value of 0.94 and 0.98 following François (1997)
and François (2002). So the actual heat fluxes can be de-
rived based on the comparison between the actual surface
temperature and the simulated surface temperature under the
limiting-cases.

Comparison between the measured radiometric surface
temperature and the simulated surface temperature under the

limiting cases can give a clue of the status of soil moisture,
i.e., higher temperature than that under the transition state
hints limitation of soil moisture on evaporation, and lower
temperature than that under the transition state may indicate
relatively better soil moisture condition in the canopy. The
derivation of the actual heat fluxes is:

(1) If Tr,wet<Tr<Tr,trans, transpiration is at its maximum
value and evaporation decreases with increasing surface tem-
perature, we have:

LEv = LEv,wet = LEv,trans
LEs = (LEs,wet − LEs,trans) · (1 − xn) + LEs,trans

(27)

wherex is an index build from radiometric surface tempera-
tures:

x = (Tr − Tr,wet)/(Tr,trans− Tr,wet) (28)

The sensible heat flux of soil and foliage is then derived as
the residual of the energy balance equation of the soil and
foliage.

(2) If Tr,trans<Tr<Tr,dry, soil sensible heat flux is at its
maximum value (evaporation is zero) and foliage sensible
heat flux increases with increasing surface temperature, we
have:

Hs = Hs,dry = Hs,trans
Hv = (Hv,dry − Hv,trans) · (1 − yn) + Hv,trans

(29)

wherey is an index build from radiometric surface tempera-
tures:

y = (Tr,dry − Tr)/(Tr,dry − Tr,trans) (30)

The latent heat flux of soil and foliage is then derived as the
residual of the energy balance equation of the soil and fo-
liage.

The indicesx andy are used to measure the relative dis-
tance of the actual radiometric surface temperatures from the
virtual radiometric surface temperatures under the limiting
cases. The coefficientn is used to account for the non-linear
effect of the heat fluxes changing with the relative change of
the surface temperature. Here we take the value ofn=0.25
and it shows that the result is not sensitive to this coefficient.

(3) If an unexpected situation happens, such asTr>Tr,dry
or Tr<Tr,wet, which may result from the errors of the mea-
surements, simulations and assumptions, the heat fluxes un-
der the limiting cases are used for the actual heat fluxes.

3 Data

Two sets of in-situ data were used for evaluation of TSEBPS:
(1) the data set from the “Quantitative Remote Sensing the-
ory and application for Land Surface Parameters (QRSLSP)”
project at Shunyi, Beijing, China, 2001, and (2) the data set
from the “Watershed Allied Telemetry Experiment Research
(WATER)” project in the Heihe River Basin, Gansu, China,
2008.
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Table 1. Information about the turbulent and TIR measurements.

Turbulent heat fluxes measurement TIR radiometric measurement

Site Location Surface Instrument Height Instrument Height View
type zenith

angle

NW3 Beijing Winter Bowen-ratio system made by 2.74 m and TIR Radiometer made by 2 m 0
wheat Peking University 0.74 m Chinese Academy of Sciences

NW4 Beijing Winter Bowen-ratio system made by 2.4 m and MINOTA TIR Radiometer 2 m 45
wheat Peking University 0.4 m made in Japan

NW5 Beijing Winter Bowen-ratio system made by 1.6 m and BS-32T TIR Radiometer 2 m 45
wheat Chinese Academy of Sciences 0.6 m made in Japan

YK Gansu Maize Eddy-covariance system made by 2.81 m IRR-PN TIR Radiometer made 3.5 m 0
Campbell company by Apogee Company

3.1 Winter wheat in Beijing

The winter wheat dataset was obtained during the “Quanti-
tative Remote Sensing theory and application for Land Sur-
face Parameters (QRSLSP)” campaign that was carried out
in North China in April 2001. The main concern of this ex-
periment was for quantitative remote sensing applications in
agriculture. The winter wheat fields located in Shunyi dis-
trict, north of Beijing (116◦34′ E, 40◦12′ N) were selected
as the chief observation target. The winter wheat with row
structure and regular irrigation is one of the main agricultural
crops in North China, and usually the growing period after
the winter starts from the end of March through the begin-
ning of April. The experiment was carried out in April in or-
der to obtain the in-situ data during the rapid growing period
of the winter wheat. There are three observation sites, NW3,
NW4 and NW5 that are adjacent from south to north, with
different planting and management measures, such as wheat
cultivar, sowing date, irrigation/fertilization date and amount
due to the fields belonging to different farmers, which re-
sulted in different surface conditions among the three sites
especially the soil moisture. During the experiment period,
soil moisture condition was the best in NW4 and the worst in
NW5, which resulted in evident difference in heat fluxes and
surface temperature between the fields.

Turbulent heat fluxes and meteorological data were
measured with Bowen-Ratio (BR) system and Automatic
Weather Station (AWS) at the 3 sites, respectively (see Ta-
ble 1). The interchange of high- and low-layer measurements
takes place for every 10-min for sites NW3 and NW4, and 5-
min for site NW5, from which 20-min (NW3 and NW4)/10-
min (NW5) average turbulent fluxes (H and LE) were com-
puted in order to eliminate the discrepancy of equipments at
the two sides of the system. 10-min averages of net radiation
and soil heat flux were stored. The measured soil heat flux
is the value at the 5 cm under the surface for the all sites in
this study, and was corrected to the surface by the method of
integration using the gradient of soil temperature and the soil

heat flux (Liebethal et al., 2005). In addition, 10-min aver-
aged ancillary meteorological data, such as air temperature,
relative humidity, and wind speed were also recorded. 10-
min average surface brightness temperature was measured
and recorded by TIR radiometers, from which the radia-
tive surface temperature was obtained by correction of at-
mospheric effect and emissivity (Olioso et al., 1996). Hence,
every 20-min (NW3 and NW4)/10-min (NW5) averaged heat
fluxes, net radiation, soil heat flux, meteorological data, and
surface temperature during daytime (when both sensible and
latent heat fluxes are positive) were collected as a group of
data, and regarded as a sample (see Table 2). The period of
available data of the 3 sites are different due to the different
beginning/ending time of TIR observation.

As a necessary input for the model, canopy structure data
(including Leaf Area Index – LAI, canopy height, leaf shape,
and row width and space) were also measured manually by a
specific team at the 3 sites regularly during the experiment.

So the winter wheat dataset contains 3 sub-datasets, which
represent different soil moisture condition as well as different
vegetation density as shown in Table 2. The 3 sub-datasets
are used independently to evaluate TSEBPS. More detailed
information about the experiment can be found in Liu et
al. (2002) for the interested.

3.2 Maize in Gansu

The maize dataset was obtained during “Watershed Allied
Telemetry Experimental Research (WATER)” project car-
ried out in Heihe River Basin of Gansu province, North-
west China from May to July 2008 (Li et al., 2009). The
main concern of this experiment was to study hydrology and
ecology processes using remote sensing techniques, there-
fore evapotranspiration is one of the main concerns in this
project. Heihe River Basin of Gansu province is located in
the arid/semi-arid region in the northwest of China, where the
agricultural and natural ecosystems suffer from deficit of pre-
cipitation frequently. The agriculture is supported mostly by

Hydrol. Earth Syst. Sci., 14, 491–504, 2010 www.hydrol-earth-syst-sci.net/14/491/2010/



X. Xin and Q. Liu: TSEBPS for estimation of land surface heat fluxes 497

Table 2. Datasets used for the evaluation of TSEBPS.

Dataset Sample number (n) date Leaf Area Index (LAI)

NW3 230 2001-4-1∼22 0.776∼2.402
NW4 188 2001-4-13∼21 2.087∼3.577
NW5 885 2001-4-5∼24 1.028∼3.094
YK-sparse 436 2008-5-21∼6–9 0.24∼0.989
YK-medium 284 2008-6-10∼6–23 1.02∼2.879
YK-dense 368 2008-6-24∼7–15 3.057∼5.298

the irrigation system, which takes the melted snow/ice wa-
ter from the upper-stream Qilian mountain area to the flat
middle- and lower-stream oasis.

The site Yingke (YK) is located in the artificial oasis to the
south of Zhangye city (100◦24′ E, 38◦51′ N), where the main
crop is maize with row structure and regular irrigation. The
turbulent heat fluxes and meteorological data were measured
with Eddy-Covariance system (EC) and Automatic Weather
Station (AWS). Half-hourly averaged turbulent fluxes (H and
LE) were computed, while 10-min averages of net radiation
and soil heat flux were stored. The measured soil heat flux
is the value at the 5cm under the surface for the all sites in
this study, and was corrected to the surface by the method
of integration using the gradient of soil temperature and the
soil heat flux (Liebethal et al., 2005). In addition, 10-min av-
erage ancillary meteorological data, such as air temperature,
relative humidity, and wind speed were also recorded. About
80% energy closure ratio was found in the EC data. Since
the two-layer model requires energy conservation, closure in
the flux measurements was enforced through a Bowen-ratio
method; that is, Bowen-ratio was calculated usingH and LE
of the EC measurements, and thenHBR and LEBR were re-
calculated with Bowen-ratio method using net radiation and
soil heat flux. 10-min average surface brightness temperature
was measured and recorded by TIR radiometers, from which
the radiative surface temperature was obtained by correction
of atmospheric effect and emissivity (Olioso et al., 1996).
Hence, every 30-min averaged heat fluxes, net radiation, soil
heat flux, meteorological data, and surface temperature dur-
ing daytime (when both sensible and latent heat fluxes are
positive) were collected as a group of data, and regarded as
a sample (see Table 2). As a necessary input for the surface
models, canopy structure data (including leaf area index –
LAI, canopy height, leaf shape, and row width and space)
were measured manually from 21 May to 15 July throughout
the whole growing period before tasseling stage of maize.

Unlike the field campaign of QRSLSP, the experiment
of the WATER project had lasted for several months. The
data collected during the experiment covers the main grow-
ing period of maize, which allows us to evaluate TSEBPS
with data of different vegetation coverage states, i.e., from
very sparse vegetation at the beginning (LAI<0.5), to very

dense vegetation at the end (LAI>5). In order to evaluate
the performance of TSEBPS at different canopy coverage,
the dataset of maize was separated into 3 subsets according
to LAI; that is YK-sparse for the data when LAI<1.0, YK-
medium for 1.0<LAI <3.0, and YK-dense for LAI>3.0.

Table 1 gives the brief information about the turbulent
fluxes and TIR radiometric measurements. Table 2 lists the
datasets or subsets that are used in the evaluation. In sum-
mary, the number of data points is mainly decided by (1) the
availability of the observation (because of discontinuity of
observation), (2) temporal average of data, (3) processing
and quality control of BR and EC data, (4) the data number
of daytime (because only the data during daytime when both
sensible and latent heat fluxes are positive were used here).

4 Results

The accuracy of TSEBPS will be assessed using the datasets
listed in Table 2. Radiative surface temperature as well as
ancillary meteorology and canopy structure data were input
to the TSEBPS, and the sensible and latent heat fluxes are
estimated as discussed previously. All other input variables
are measured including net radiation and soil heat flux. The
difference between estimation and measurement of the sen-
sible and latent heat fluxes will be analyzed for each of the
datasets.

4.1 Results of the winter wheat datasets

The canopy sensible and latent heat fluxes predicted versus
the measured values of winter wheat sites are shown in Fig. 3.
On the whole, TSEBPS estimated heat fluxes agree very well
with the field measurements over winter wheat canopies. The
performance of TSEBPS at the 3 sites is very close besides
the difference in the magnitude of sensible and latent heat
fluxes, which can be explained to some extent by the sur-
face condition of the fields. As we have mentioned before,
the canopy density and soil moisture condition are different
at the 3 sites (Table 2), which resulted in different magni-
tude of sensible and latent heat fluxes (therefore the Bowen
ratio). The average value of available energy (net radiation
minus soil heat flux) for site NW3, NW4 and NW5 is 324.5,
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Fig. 3. Comparison between observations and TSEBPS modeled sensible and latentheat fluxes over winter wheat canopy:(a) NW3, (b)
NW4, (c) NW5. Dashed line represents perfect agreement.

331.4 and 205.2 Wm−2, respectively. The average value of
measured sensible heat flux for the 3 sites is 100.5, 55.4
and 73.4 Wm−2, and the latent heat flux is 224.0, 276.0 and
107.2 Wm−2, respectively. For the latent heat flux, the best
agreement appears at NW4, and followed by NW3 and NW5,
and all of the predictions are within acceptable accuracy. The
data points are scattered closely to the 1:1 line and the bias is
confined mostly to within around 50 Wm−2, indicating good
agreement with measured values. There is no obvious trend
of overestimate or underestimate of the heat fluxes.

Table 3 to Table 5 show the error statistics of the pre-
dicted heat fluxes. Root-Mean-Squared-Error (RMSE),
Mean-Absolute-Difference (MAD) and Mean-Absolute-

Percentage-Difference (MAPD) are shown in the tables.
RMSE of the 3 sites are all within 35 Wm−2 and MAD within
30 Wm−2, which means that the predicted heat fluxes agree
well with the field heat fluxes observation. Mean and stan-
dard deviation of the predicted heat fluxes compare very well
with those measured as shown in Table 3 to Table 5. The
best agreement is found at NW4 dataset, where both mean
and standard deviation of predicted sensible and latent heat
fluxes are very close to the measurements. The discrepancy
between measurements and simulation is within the uncer-
tainty of turbulent heat fluxes measurements. Coefficients
of determination (R2) for sensible and latent heat fluxes are
high at the three sites, indicating TSEBPS can predict heat
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Table 3. Statistics of TSEBPS estimated versus observed heat fluxes at site NW3 (RMSE: Root Mean Squared Error; MAD: Mean Absolute
Deviation; MAPD: Mean Absolute Percentage Deviation;R2: coefficient of determination).

Statistics RMSE MAD MAPD R2 Mean Standard Deviation
(W m−2) (W m−2) (%) (W m−2) (W m−2)

Heat flux estimated measured estimated measured

H 31.4 25.4 25.3 0.8241 113.2 100.5 68.4 60.8
LE 31.4 25.4 11.3 0.9046 211.4 224.0 92.8 90.2

Table 4. Statistics of TSEBPS estimated versus observed heat fluxes at site NW4 (RMSE: Root Mean Squared Error; MAD: Mean Absolute
Deviation; MAPD: Mean Absolute Percentage Deviation;R2: coefficient of determination).

Statistics RMSE MAD MAPD R2 Mean Standard Deviation
(W m−2) (W m−2) (%) (W m−2) (W m−2)

Heat flux estimated measured estimated measured

H 26.6 20.6 37.4 0.704 54.2 55.4 48.9 39.8
LE 26.6 20.6 7.5 0.9107 277.1 276.0 87.1 88.7

Table 5. Statistics of TSEBPS estimated versus observed heat fluxes at site NW5 (RMSE: Root Mean Squared Error; MAD: Mean Absolute
Deviation; MAPD: Mean Absolute Percentage Deviation;R2: coefficient of determination).

Statistics RMSE MAD MAPD R2 Mean Standard Deviation
(W m−2) (W m−2) (%) (W m−2) (W m−2)

Heat flux estimated measured estimated measured

H 26.4 21.2 21.6 0.8722 99.2 98.1 64.0 72.9
LE 26.4 21.2 19.7 0.7581 106.0 107.2 53.6 47.0

fluxes with high accuracy. The highest and lowestR2 of the
predicted latent heat flux appear at site NW4 and NW5, re-
spectively.

In order to investigate the bias of TSEBPS-estimated LE,
we compared the relationship between the bias and input
parameters and found that the surface temperature gradient
(surface temperature minus air temperature) is the mostly re-
lated factor with the bias as shown in Fig. 4. We can see that
the temperature gradient is mostly under 2 K at NW4, and the
bias of estimated LE is also small, mostly within±20 Wm−2.
At point No. 8 (12:00, 13-April), the temperature gradient is
the largest (about 8 K), and the bias of estimated LE is also
the largest (about−60 Wm−2). At NW5, the temperature
gradient is much higher than that of NW4 (mostly between
5∼20 K), and the bias of estimated LE is also larger than that
of NW4 (mostly within±50 Wm−2). On the whole, the trend
of bias is opposite to that of temperature gradient. Similar to
NW4, the points with largest bias (LE was much underesti-
mated in Fig. 3) also have very large temperature gradient.

We also investigated the correlation between the bias of
TSEBPS-estimated LE and wind speed. It can be seen from
Fig. 4 that there is no obvious trend in the correlation for

site NW4 and NW5. Generally, wind speed is negatively
correlated with the resistances for the transfer of heat in the
canopy-atmosphere system, which means that higher wind
speed will result in higher sensible heat flux and lower la-
tent heat flux if we employ a simple single-layer model to
calculate sensible heat flux and derive latent heat flux using
residual method. In this study, however, as we employed an
interpolation method to calculate the sensible (or latent) heat
flux and derive latent (or sensible) heat flux as the residual
of the energy balance equation, the impact of wind speed
on the bias of TSEBPS-estimated LE is not that straight for-
ward. From Eq. (27) through Eq. (30) we can infer that the
bias of TSEBPS-estimated LE is much correlated with sur-
face temperature gradient than wind speed. Wind speed can
influence component heat fluxes at the limiting cases, but its
influences might counteract each other in Eqs. (27) and (29).
Meanwhile, wind speed can influence the surface tempera-
ture gradient (see Fig. 4), which in turn will propagate to the
bias of TSEBPS-estimated LE.
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Table 6. Statistics of TSEBPS estimated versus observed heat fluxes at site YK (RMSE: Root Mean Squared Error; MAD: Mean Absolute
Deviation; MAPD: Mean Absolute Percentage Deviation;R2: coefficient of determination).

Statistics RMSE MAD MAPD R2 Mean Standard Deviation
(W m−2) (W m−2) (%) (W m−2) (W m−2)

Heat flux estimated measured estimated measured

H 31.0 23.7 32.3 0.7610 79.9 73.4 56.0 61.8
LE 31.0 23.7 9.0 0.9722 255.5 262.0 169.9 178.2
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Fig. 4. Time series of TSEBPS estimated latent heat flux bias (TSEBPS estimated minus measured latent heat flux) versus surface temperature
gradient (radiative surface temperature minus air temperature) and wind speed.

4.2 Results of the maize dataset

The canopy sensible and latent heat fluxes predicted versus
the measured values are shown in Fig. 5. Similar to the win-
ter wheat dataset, the estimated sensible and latent heat fluxes
agree very well with the measurement. Table 6 shows the er-
ror statistics of the predicted heat fluxes. The average value
of available energy (net radiation minus soil heat flux), sen-
sible and latent heat fluxes is 335.4, 73.4 and 262.0 Wm−2,
respectively. RMSE and MAPD of the estimated latent heat
flux are low and the coefficient of determination (R2) is very
high, which means that the TSEBPS-estimated latent heat
flux with TIR measurements can reach high accuracy. Mean
and standard deviation of the predicted heat fluxes compare
very well with those measured as shown in Table 6.

In order to investigate the performance of TSEBPS at
different vegetation coverage conditions, the error statistics
are recalculated separately for the 3 subsets of the maize

according to Table 2. The results are shown in Table 7, from
which we can see that there is no evident difference in the
R2 between the subsets, but the RMSE shows much more
variability between the subsets, i.e., RMSE increases with
increasing LAI. On the other hand, MAPD decreases with
increasing LAI. Comparison of mean and standard deviation
shows that datasets of medium and dense canopy have larger
bias than that of sparse canopy. However, the difference
between the subsets is not evident, and the performance of
TSEBPS is stable from very sparse to very dense canopies.
It means that TSEBPS can estimate heat fluxes accurately
above surfaces with different density of vegetation.

The turbulent heat fluxes were measured by Bowen-ratio
system in the winter wheat sites and eddy-covariance sys-
tem in the maize site. Both techniques are popular in ex-
periments. In this study, EC data was processed to meet
the energy balance with a Bowen-ratio method (Twine et al.,
2000), and BR data was also processed with quality control.
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Table 7. Statistics of TSEBPS estimated versus observed heat fluxes at three different growing stages of maize at site YK (RMSE: Root
Mean Squared Error; MAD: Mean Absolute Deviation; MAPD: Mean Absolute Percentage Deviation;R2: coefficient of determination).

Statistics RMSE MAD MAPD R2 Mean Standard Deviation
(W m−2) (W m−2) (%) (W m−2) (W m−2)

Heat flux estimated measured estimated measured

YK-sparse 25.2 19.6 11.8 0.9576 162.6 165.7 120.0 121.5
YK-medium 29.5 23.3 8.6 0.9627 260.0 270.1 136.9 142.7
YK-dense 37.5 28.8 7.8 0.9687 362.2 369.7 179.3 195.0
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Fig. 5. Comparison between observations and TSEBPS modeled sensible and latentheat fluxes over maize canopy. Dashed line represents
perfect agreement.

Nevertheless, it is hard to compare the different measure-
ment techniques based on the present datasets and give a con-
clusion about the uncertainties of the measurements in this
study. Fortunately, some useful information can be found
in the references that analyzed the variation of flux estima-
tion by various micrometeorological techniques based on the
datasets obtained in other experiment projects, such as Mon-
soon’90, FIFE, and ChinaFLUX (Norman et al., 1995; Twine
et al., 2000; Massman et al., 2002; Yu et al., 2006). Accord-
ing to the references and other studies that compare model
predicted flux with in-situ measurements (e.g., Timmermans
et al., 2007), uncertainties of fluxes are about 25∼50 Wm−2

for H and LE measured by EC technique, and about 20%
for LE measured by BR technique. The errors of TSEBPS-
estimated heat fluxes are of similar magnitude with the un-
certainties in the measurements, which means that TSEBPS
is able to predict surface heat fluxes with acceptable accu-
racy.

4.3 Error analysis

According to the flow chart of TSEBPS (Fig. 2), the actual
heat fluxes are derived from the heat fluxes of the limiting
cases with an interpolating method. So the error of TSEBPS-
estimated heat fluxes comes from these two aspects, i.e., the
heat fluxes of the limiting cases and the interpolating meth-
ods. The sensitivity of the estimated heat flux to the error of

the heat flux at the limiting cases is described by the follow-
ing way.

1Y =
Y (Yi ± 0.1Yi) − Y (Yi)

Y (Yi)
(31)

whereY represents the derived actual heat flux, andYi the
heat flux at the limiting cases (i.e., wet- and dry-limits, and
transition state). From Eqs. (27) and (29), we can see that the
non-linear interpolation takes place for soil latent heat flux
when Tr,wet<Tr<Tr,trans, and for foliage sensible heat flux
whenTr,trans<Tr<Tr,dry. And at other cases, the interpolation
is linear. Sensitivity to the error of LEs,wet in Eq. (27) and the
error ofHv,dry in Eq. (29) can be expressed in a same way:

1Y = ±
1

10+
10Apn

1 − pn

(32)

whereA represents LEs,trans/LEs,wet andp for x for Eq. (27),
and A representsHv,trans/Hv,dry and p for y for Eq. (29).
According to the assumption of TSEBPS (Eqs. 25 and 26),
A equals to 0 or is very close to 0 (no negative value of the
heat fluxes is allowed in the calculation), which results in
that the sensitivity to the error of LEs,wet andHv,dry is nearly
±10%. It means that the error of component heat fluxes at
the dry- and wet-limiting cases is propagated to the estimated
heat fluxes in a linear way.
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Sensitivity to the error of LEs,transin Eq. (27) and the error
of Hv,trans in Eq. (29) can also be expressed in a same way:

1Y = ±
1

10+
10(1 − pn)

Apn

(33)

BecauseA equals to 0 or is very close to 0, the sensitivity
to the error of LEs,trans and Hv,trans is very small and can
be regarded as 0. It means that the error of component heat
fluxes at the transition state has no obvious influence on the
estimated heat fluxes.

Sensitivity to the error ofp (x in Eq. 27 andy in Eq. 29)
can be expressed as:

1Y =
1 − (1 ± 0.1)n

1
(1 − A)pn − 1

(34)

BecauseA equals to 0 or is very close to 0, the sensitivity
to the error ofp mainly varies withp. The magnitude of
p is within the range of [0, 1]. Whenp is close to 0, the
sensitivity is small, and whenp is close to 1, the sensitivity
becomes relatively larger. And the sign of the error in the
estimated heat fluxes is opposite to that ofp. In our datasets,
the average value ofp is about 0.5∼0.6, which leads to about
±10∼20% error in the estimated heat fluxes for±10% of
error inp.

From above analysis we can see that±10% error in the
component heat fluxes at the wet- and dry-limiting cases
will result in about±10% error in TSEBPS- estimated heat
fluxes, and the error in the component heat fluxes at the tran-
sition state will result in no obvious error in TSEBPS- es-
timated heat fluxes. The component heat fluxes at the lim-
iting cases are calculated using Eq. (10) with the aerody-
namic temperature and component temperatures, which are
calculated based on the assumptions of the limiting cases.
In this study, the assumptions and calculations are physics-
based and the error in the estimated component heat fluxes is
regarded within acceptable range.

On the other hand, the error in the simulated surface tem-
perature at the limiting cases has obvious influence on the
results. The error ofp comes from the error of TIR observa-
tion, as well as the error of the simulated surface temperature
at the limiting cases. In our study, a directional canopy TIR
radiation transfer model by François (1997) is used to simu-
late the surface temperature at the limiting cases. This model
is of reasonable physics-basis and has performed well in the
experimental study in the reference. In their study, the error
of the simulated temperature is relatively small and accept-
able. In this study, we believe that the simulated temperature
is of good quality and comparable to the field TIR observa-
tion. Furthermore, from Eqs. (28) and (30) we can see that
the error inx andy can be relatively small because the index
is constructed by the difference between the temperatures,
which means that the error of the temperature can wipe one
another out.

At last, some may argue that the error may come from
the coefficientn. This coefficient is empirical and we took
n=0.25 because it gives the best accuracy in the results.
And this value is identical for both winter wheat and maize
datasets, which implies that the coefficient may have a uni-
versal value for all of the surfaces, but this still needs to be
proved by more investigations.

5 Discussions

TSEBPS is proposed to estimate surface heat fluxes using
TIR data obtained by space-borne sensors such as AVHRR,
MODIS, etc. This kind of data is easily available and eco-
nomical for the users, which is important for applications
at regional or global scale with routinely schedule. For re-
gional or global estimation of land surface evapotranspira-
tion, sparsely vegetated surface is one of the situations of
relatively larger uncertainty, where single layer model as-
sociated with TIR data can not simulate the canopy heat
fluxes accurately. As a parameterization of the classical two-
layer model, TSEBPS is reliable on the theory basis. It was
shown in the evaluation using datasets over different veg-
etation canopies that TSEBPS-estimated evapotranspiration
compared very well with the field measurement. The param-
eterization is based on the limiting cases of soil moisture,
which is commonly accepted. The difference of TSEBPS
is to consider foliage and soil independently at the limiting
cases, and bring a key state of soil moisture into the model,
i.e., transition state, which is based on the process of dry-
ing off after a rain or irrigation event when the soil surface
is dry and the root zone is still wet. By the concept of tran-
sition state, we can hence define two different states of soil
moisture in the canopy, i.e., before and after the transition,
which represent the limit of soil moisture is only on Evapo-
ration (E) or on both Evaporation (E) and Transpiration (T).
The canopy heat fluxes are then easily predictable using the
assumptions of the limiting cases associated with an interpo-
lation method using TIR data. Commonly, all of the states of
soil moisture can be described by such assumptions. How-
ever, there are exceptions when the soil surface is wet and
root zone is relatively drier, which could be possible when
there is heavy dew or light precipitation while the field has
been under drought already. Under this circumstance, the
relationship between surface temperature and soil moisture
would be different from the assumption of TSEBPS, and
TSEBPS-estimated heat fluxes would be of substantial error.
Fortunately, this kind of exception is not a frequent event,
i.e., once or twice during the whole growing season of crop,
which will not affect the applicability of TSEBPS in the long
term.

It can be found in the results that the TSEBPS-estimated
heat fluxes under dense and wet canopy are similar to that
under sparse and dry canopy with high accuracy. The empir-
ical method that tries to relate TIR measurements with actual
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heat fluxes is able to produce good results and can be used
widely for surfaces with different soil moisture and vegeta-
tion conditions.

According to the sensitivity analysis, the TSEBPS-
estimated heat fluxes are not sensitive to the assumed heat
fluxes at the limiting cases as well as the error of the sim-
ulated temperature. On the other hand, it was found that
higher accuracy can be obtained by using more complex
model to allocate net radiation into soil and foliage. How-
ever, this could restrict the applicability of TSEBPS in satel-
lite data. Compromise between accuracy and convenience
has to be made. Fortunately, a simple method such as shown
in Eqs. (4) to (6) can calculate soil and foliage net radiation
reasonably and result acceptable heat fluxes in this study. On
this meaning, the method proposed and used in this study is
applicable for regional estimation of ET using satellite data.
Results of evaluation of TSEBPS using satellite data will be
reported by the authors in the near future.

6 Conclusions

Two-layer energy balance model has been validated and ap-
proved at many references. However, its application in re-
mote sensing is still of problem because of short of com-
ponent temperatures data. In this study, a parameteriza-
tion scheme (TSEBPS) was proposed to utilize the two-layer
model with traditional TIR observation data. The parameter-
ization is based on the assumption of the changing process
of sensible and latent heat fluxes of the foliage and sub-layer
soil with the change of soil moisture at surface layer and root
zone. The actual canopy heat fluxes are derived from the ob-
served radiative surface temperature by comparing with the
simulated temperatures at the limiting cases. Two datasets
obtained in two different field experiments were used to eval-
uate the reliability of TSEBPS. The estimated canopy heat
fluxes agreed well with the field measurements of heat fluxes.
The uncertainties of the estimation are comparable to in-situ
measurement uncertainties. The errors of TSEBPS mainly
come from the following aspects, i.e., the assumption of the
limiting cases, and the interpolation method of heat fluxes
using the TIR observations. Although extensive evaluation
should be carried out using more in-situ or remotely sensed
data, the results of this study showed that the method pro-
posed in this paper is reliable and can be used to estimate
heat fluxes over sparsely vegetated surfaces.
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