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Abstract: 

Large-scale hydrological modeling in China is challenging given the sparse 

meteorological stations and large uncertainties associated with atmospheric forcing 

data.Here we introduce the development and use of the China Meteorological 

Assimilation Driving Datasets for the SWAT model (CMADS) in the Heihe River 

Basin(HRB) for improving hydrologic modeling, by leveraging the datasets from the 

China Meteorological Administration Land Data Assimilation System 

(CLDAS)(including climate data from nearly 40000 area encryption stations, 2700 

national automatic weather stations, FengYun (FY) 2 satellite and radar stations). 

CMADS uses the Space Time Multiscale Analysis System (STMAS) to fuse data 

based on ECWMF ambient field and ensure data accuracy. In addition, compared with 

CLDAS, CMADS includes relative humidity and climate data of varied resolutions to 

drive hydrological models such as the Soil and Water Assessment Tool (SWAT) model. 
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Here, we compared climate data from CMADS, Climate Forecast System Reanalysis 

(CFSR) and traditional weather station (TWS) climate forcing data and evaluatedtheir 

applicability for driving large scale hydrologic modeling with SWAT. In general, 

CMADS has higher accuracy than CFRS when evaluated against observations at 

TWS; CMADS also provides spatially continuous climate field to drive distributed 

hydrologic models, which is an important advantage over TWS climate data, 

particular in regions with sparse weather stations. Therefore, SWAT model 

simulations driven with CMADS and TWS achieved similar performances in terms of 

monthly and daily stream flow simulations, and both of them outperformed CFRS. 

For example, for the three hydrological stations (Ying Luoxia, Qilian Mountain, and 

ZhaMasheke) in the HRB at the monthly and daily Nash-Sutcliffe efficiency ranges of 

0.75-0.95 and 0.58-0.78, respectively, which are much higher than corresponding 

efficiency statistics achieved with CFSR (monthly: 0.32-0.49 and daily: 0.26 – 0.45). 

The CMADS dataset is available free of charge and is expected to a valuable addition 

to the existing climate reanalysis datasets for deriving distributed hydrologic 

modeling in China and other countries in East Asia. 

 
Key words: reanalysis climate data; hydrologic modeling; comparative analysis  
 
 

Introduction 

   Distributed hydrologic models are being widely used to understand climate 

changing impacts on hydrological processes and water balance. There is an increasing 

need of meteorological forcing data with high precision and temporal-spatial 

resolution for driving hydrological models to provide reliable model simulations to 
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support water and land management practices. Recent studies show that the quality of 

meteorological data has been a major uncertainty source for determining model 

performance (Collick et al., 2009, Kim et al., 2008a, Kim et al., 2008b, Muluneh et al., 

2009, Melesse et al., 2010). Therefore, improving data accuracy is important for 

effectively reducing model uncertainty (Neitsch et al., 2009, Zhang et al., 2013). In 

addition, various atmospheric reanalysis data exist(Saha et al.,2010, Trenberth et 

al.,2013, Kanamitsu et al.,2002, Dee et al.,2011, Gibson et al.,1997, Uppala et 

al.,2005, Rienecker et al.,2011) and have been widely usedin hydrologic modeling 

studies (Najafi et al.,2012, Fuka et al.,2014, Smith et al.,2013, Lavers et al.,2012, 

Quadro et al.,2013, Wei et al.,2013). Examples include CFSR by NCEP (National 

Centers for Environmental Prediction) (Saha et al.,2010), (R1)-NCEP/NCAR 

(National Center for Atmospheric Research) reanalysis dataset and (R2)-NCEP/DOE 

reanalysis dataset(Trenberth et al.,2013, Kanamitsu et al.,2002);ERA-Interim 

(ECMWF Reanalysis-Interim) (Dee et al.,2011), ERA-15 (ECMWF Reanalysis-15) 

( Gibson et al.,1997) and ERA-40 (ECMWF Reanalysis-40) (Uppala et al.,2005) by 

ECMWF(European Centre for Medium-Range Weather Forecasts system);and 

MERRA (Modern Era Retrospective-Analysis for Research and Applications) 

( Rienecker et al.,2011) by NASA (National Aeronautics and Space Administration). 

In addition, the output data from global or regional climate model and its downscaling 

data are also being widely used to drive large-scale hydrological models(Rienecker et 

al.,2011, Najafi et al.,2012, Fuka et al.,2014, Smith et al.,2013, Lavers et al.,2012, 

Quadro et al.,2013, Wei et al.,2013). From the mid-term of 1990s, the USA, EU, 
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Japan et al have carried out a series of global atmospheric data reanalysis plans. Until 

now they have finished three rounds of reanalysis. The first generation of reanalysis 

datasets mainly include NCEP/NCAR global atmosphere reanalysis developed by 

NCEP and NCAR from 1948(Saha et al., 2010), the ERA-15 (1979-1993) by 

ECMWF(Najafi et al.,2012) and ERA-15 (1980-1995) by NASA Data Assimilation 

Office (DAO)( Takacs et al.,1994, Schubert et al.,1995). The second generation of 

reanalysis datasets include NCEP/DOE reanalysis (1979-) (Kanamitsu et al.,2002), 

ERA-40 (1958-2001) by ECMWF(Uppala et al.,2005, Simmons et al.,2000)and 

JRA-25 (1979-) by Japan Meteorological Agency (JMA) and Central Research 

Institute of Electric Power Industry (CRIEPI)( Onogi et al.,2007). Recently, the third 

generation of reanalysis datasets have been completed, including ERA-Interim (1979-) 

by ECMWF (Simmons et al.,1989), CFSR (1979-) by NCEP(Saha et al.,2006, Saha et 

al.,2010), MERRA (1979-) by NASA(Rienecker et al.,2011) andJRA-55 (1958-2012) 

by JMA(Ebita et al.,2011). JRA-55 also involves two extra versions: JRA-55C 

(1972-2012, only fuses routine observation) and JRA-55AMIP (1958-2012, not fuses 

observations, equals climate simulation). Recently, some datasets different from pure 

atmosphere reanalysis have occurred. For example, the 20th century reanalysis (20CR, 

1871-2008) leaded by NOAA/ESRL and CIRES from Colorado university( Compo et 

al.,2011)adopted EnKF assimilation technology and fused only surface air pressure 

observations; aerosol reanalysis (MERRA-AERO, 2000- )( Smirnov et al.,2009) and 

atmospheric chemistry reanalysis (MACC, 2003-) (Stein et al.,2012)generated by 

NASA and ECMWF respectively. The appearance of reanalysis data satisfies the 
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needs of long-term climate changing researches, offers long-term, continuous and 

global four-dimensional datasets in order to deeply understand atmospheric 

circulation and its effects on climate formation and facilities systematic study for 

earth atmosphere. In recent years, reanalysis data has been widely used in all kinds of 

researches such as climate monitor and season forecasting, climate change, climate 

diagnose, global and regional water cycle and energy balance, climate mode 

verification and so on.  

Although the weather patterns and assimilation systems used by these reanalysis 

datasets are different from each other, the common point is that the patterns and 

assimilation systems are business mature numerical forecasting models.For example, 

NCEP-NCAR (NCEP1) uses business numerical model GSM (T62) and SSI 

assimilation system on January, 1995; NCEP-DOE (NECP2) uses basically the same 

model and assimilation system with NCEP1, but does some improvements;ERA-40 

uses integration forecasting system IFS (T159) by ECMWF and adopts improved 

3DVar technology to assimilate data (ERA-40 did not refresh any more after August 

2002); ERA-Interim uses ECMWF integration forecasting system IFS (T255) and 

4DVAR assimilation system, which is a continuous product of ERA-40. Compared 

with ERA-40, ERA-Interim not only improves on horizontal resolution (T159->T255), 

but also adopts more advanced 4DVar technology. JRA-25 uses T106 global spectrum 

mode (JMA 2002), whose assimilation system is developed based on 3DVar 

technology. In addition, NCEP builds real-time updated CFSR global reanalysis 

dataset. Different from the past, CFSR adopts global high resolution 
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atmosphere-ocean-land-ice coupled system (whose atmosphere mode is GFS, ocean 

mode is MOM4, land mode is Noah). Meanwhile the assimilation system of CFSR is 

also discrete (whose atmosphere mode is GIS-3DVAR, ocean-ice mode is GODAS, 

and land mode is GLDAS). NASA also builds MERRA global reanalysis data, which 

uses GEOS-5 ADAS assimilation system based on 3DVar GIS technology (whose 

horizontal resolution is 38km (T382)) and improves a lot in the field of water cycle 

simulation. Furthermore, JMA-55 reanalysis dataset adopts TL319L60 (about 60km) 

on December, 2009, 4DVar assimilation system (T106 inner model) and offline SiB 

land model (using 3-hour atmospheric forcing data). 

   Many scientists carried out reliability analysis on the above reanalysis data and 

obtained a lot of useful conclusions. However, different reanalysis data has its own 

advantages and disadvantages, and any kind of data does not have the same 

performance in different areas and time periods. For example, Zhao Tianbao et 

al(Zhao et al.,2006)compared and analyzed ERA-40 and NCEP-2 and found that the 

confidence level of ERA-40 was higher than NCEP-2. While Huang Gang(Huang et 

al.,2006)studied China sounding data and pointed out that before 1970s when 

researching East-Asia climate inter decadal variation, ERA-40 was better; after 1970s, 

on the description of troposphere geopotential height and temperature in Inner 

Mongolia and North China, NCEP/MCAR was better than ERA-40. Compared with 

the two reanalysis plans, the 6-hour global precipitation distribution and quantity 

produced by JRA-25 and JCDAS are the best in time and space. But due to the low 

resolution of JRA-25, it is not suitable for mesoscale analysis (Simmons et al., 2000). 
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Najafi et al(Najafi et al.,2012) used CSFR dataset to drive the soil moisture model 

(SAC-SMA) and analyzed runoff in Donghe River basin with water supply from snow 

fall and melting. Fuka et al (Fuka et al., 2014) used precipitation and temperature date 

from the CFSR dataset (http://cfs.ncep.noaa.gov/cfsr/) to drive SWAT model and 

found that the SWAT simulations driven by CSFR were better than that with TWS. 

Smith et al (Smith et al., 2013) compared the water balance relations of ERA-Interim、

CSFR、MERRA between land surface and atmosphere and concluded that the above 

datasets all could reflect seasonal changes of water balance well. Lavers et al (Lavers 

et al.,2012) used ERA-Interim, CFSR, NCEP-NCAR and MERRA to study the 

relation between winter flood and large-scale climate, demonstrating that all these 

data could reflect a consistent relationship between the two. Quadro et al (Quadro et 

al., 2013) found that CSFR performed better in simulating South America water 

balance compared with NCEP Reanalysis II (NCEP-2) and MERRA. Besides, Wei et 

al (Wei et al., 2013) simulated three cyclones going through Taiwan Strait by using 

CFSR and TRMM. Although the CFSR dataset is widely used, we found that this 

datasethaslarge uncertaintiesin precipitation frequency and intensity although 

large-scale precipitation climatology is captured well (Higgins et al., 2010, Silva et al., 

2011). Precipitation is one of the most important factors in the processes of generating 

runoff. However, due to the lack of reliable observations, the usability and accuracy of 

CFSR dataset in China are not satisfactory. 

   Because of the coarse resolution, global climate modes (GCMs) are unable to be 

completely applied in regional climate pattern, which is also stated in the IPCC fourth 
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report (Gerald et al., 2007). Studies show that GCMs cannot be directly applied in the 

assessment of regional-scale future hydrological changes (Wood et al., 2004). Given 

the regional climate modes have higher spatial-temporal resolutions than GCMs, Lu et 

al used precipitation output of mesoscale climate modes (MC2) to drive Xin’anjiang 

model, which increased the forecasting precision and lead time of land-atmosphere 

coupling model (Lu et al.,2007). However, Chao et al (Wang et al., 2010) obtained 

worse results by using the regional climate model (RegCM3) to drive semi-distributed 

hydrological model (SWAT). For the verification of RegCM3 in China, Jeremy et al 

(Jeremy et al.,2003) used RegCM3 to simulate and analyze monthly changing rules of 

precipitation and seasonal precipitation in winter and summer in the monsoon area of 

East Asian, finding that RegCM3 produced larger errors for precipitation simulation 

especially in winter.  

   Compared to Southeastern China, the western area in China has sparse 

meteorological stations. As a result, limited meteorological stations in this area 

constrained large-scale modeling studies. Given the poor performance of regional 

climate models and reanalysis datasets in China, it is necessary to develop a high 

resolution dataset covering the whole country and evaluate its performance in 

large-scale hydrological modeling. This study presents the newly developed CMADS 

dataset which can be used for large-scale hydrological modeling with SWAT model. 

This new dataset is based on China’s land assimilation system forcing field. This 

study compared the modeling performance with inputs from CMADS, CFSR and 

TWS, and then evaluated the added value of the newly developed CMADS dataset in 
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large-scale modeling studies with Hei he River Basin as the study region. 

1. Study area 

Note: YLX, QLM and ZMSK are correlation coefficients and bias of Ying Luoxia, Qilian Mountain and ZhaMashenke stations 

respectively. 
Fig. 1. Distribution of meteorological stations and hydrological stations in the study area 

Heihe River Basin (E98°34′-101°09′N37°43′-39°06′) is the second largest inland 

river of China, originating from Qilian Mountain in the South and flowing out of the 

mountain at Ying Luoxia hydrological station. The Heihe River Basin has a higher 

latitude in the south than in the north, higher in the west than in the east. This basin is 

characterized by scare precipitation, adequate sunshine and large diurnal temperature 

range. The total catchment area is 9973km2 with an average elevation between 

1980.629m and 4029.827m (Figure 1). Heihe River Basin has an average annual 

precipitation of 300mm-700mm and an average annual temperature between -3℃ and 

7℃. The mountain area, whose altitude is above 4500m, is covered with ice and snow 

and the altitude of snow line increases from east to west. Due to the large amount of 

precipitation and glacier in Qilian Mountain as well as its mountainous underlying 
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surface and good vegetation distribution, Qilian Mountain area is the upstream area of 

the whole Heihe River Basin. The multi annual average runoff at Ying Luoxia station 

is 1.58 billion m3. However, the annual runoff changes less in Heihe River Basin, 

whose maximum and minimum annual runoff are usually smaller than 3. There is 

large intra-seasonal variability with May and June accounting for 12%-25% of the 

annual runoff and July and September for 50%-55% of the annual runoff. The 

financial revenue mainly depends on animal husbandry. This area has abundant water 

resources and developed irrigation facilities. 

2. Material and methodology 

   This study used the SWAT model to illustrate the added value of the CMADS data 

with Heihe River Basin as the study region. The observed stream flows from three 

hydrological stations in this area were obtained from Heihe River Basin Authority. 

Then three simulations were conducted with SWAT model driven by CMADS, CFSR 

and TWS, respectively. Finally, the simulated results were compared with the 

observations. 

2.1 Land surface input data 
 

2.1.1 Digital elevation model (DEM) 
 

   The spatial input data of SWAT model includes DEM data, river network data and 

land use data. DEM data used in this study is the SRTM - (90m) DEM, which is 

archived from CGIAR-CSI SRTM 90 database(http://srtm.csi.cgiar.org/SELECTION 

/inputCoord.asp),(Jarvis et al.,2008). 

2.1.2 Soil distribution and land use data 

   Soil property and land use category determine the characteristics of flow 
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generation and concentration in different Hydrological Response Units (HRU) of the 

SWAT model. The soil data chosen in this study is obtained from China Soil Dataset 

(v1.1) which is based on World Soil Database (HWSD) (Fischer et al.,2008).Soil 

categories in the basin include: Eutric Leptosols (accounting for 31.114% of the 

watershed area), Gelic Leptosols (28.687%), Luvic Kastanozems(8.673%), Luvic 

Gypsisols (6.498%), Rendzic Leptosols(4.342%), Gelic Gleysols(3.339%), Mollic 

Leptosols (2.517%), Luvic Chernozem(2.447%), Haplic Kastanozems(2.316),, 

Cumulic Anthrosol(2.206%), Gelic Cambisols(1.564%), Calcic Gleysols(1.374%), 

Haplic Chernozems (1.344%), TerricHistosols(0.772%), Calcaric 

Phaeozems(0.702%),, Calcaric Fluvisols(0.622%), Calcic Kastanozems (0.602%), 

Haplic Greyzems (0.340%), Mollic Gleysols (0.311%), Glaciers(0.120%), Haplic 

Gypsisols (0.110%), where % indicates the area ratio between the area of the soil 

category and the whole watershed area. 

   Land use map (GLC200 data) is from China West Data Center (WestDC) (Zhang 

et al., 2012). The main land category in the research area is meadow, accounting for 

64.173% of the watershed area, followed by Meadow Brome grass (24.747%), Bare 

Rocks (7.079%), Ice (1.253%), Desert Grassland (0.963%), Farmland (0.602%), 

Needleleaved Deciduoud Forest (0.461%), Gravels (0.421%), Bush (0.221%), Desert 

(0.07%) and Plain Grassland (0.01%). This study matched the above land use data 

with the similar code from SWAT land use database. The above land use types were 

expressed as follows in SWAT vegetation database: MEDW, BROM, ROCK, ICE, 

DEGA, AGRL, FRSD, GRAV, RNGB, DESE and PAST. In order to guarantee the 
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accuracy of ice data, the land use data overlays The Second Glacier Inventory Dataset 

of China (Liu et al., 2015, GUO et al., 2014). 

    To ensure the consistency of model, this study set spatial resolution of DEM, soil 

and land use as 1km, and set projection coordinates as Beijing_1954_GK_Zone_17N. 

2.2 Hydrological verification data 

This study used daily stream flow observations of ZhaMashenke, Qilian Mountain 

and Ying Luoxia hydrological stations. The details of each station are shown in Table 

1. 

Table 1 Hydrological stationsdata statistics in Heihe River Basin 

2.3Atmospheric forcing input data 

    The study chooses three kinds of datasets as the atmospheric forcing data of 

SWAT model (shown in Table 2) and Heihe River Basin has four national basic 

meteorological observation stations (i.e. Tuo Le (T1), Ye Niugou (T3), Qilian (T4) 

and Zhang Ye (T2)). The observation stations can be regarded as the most 

authoritative results in space. In order to assess the accuracy of CFSR and CMADS in 

the basin, we will analyze the interpolation results of CFSR and CMADS in location 

T1-T4 of TWS in the following pages. For TWS, The emphasis of this research is to 

obtain daily average air pressure, average wind speed, average temperature, average 

relative humidity, daily maximum/minimum temperature, daily precipitation and 

sunshine duration. The missing values of the observations are filled by the SWAT 

Station Name Nature 

sub-basin 

area(Km2), 

Latitude(°), Longitude(°), Station 

Elevation(m), 

Data period(year), 

Ying Luoxia 243 38.82 100.18 1700.4 2009-2013 

Qilian Mountain 310 38.20 100.23 3020.1 2009-2013 

ZhaMashenke 126 38.23 99.98 2810.2 2009-2013 
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model embedded weather generator. Specifically, SWAT model uses these observed 

data to calculate multi annual climate conditions (Neitsch et al., 2009) and then adopts 

the centroid method to interpolate station elements(Andersson et al.,2012). 

2.3.1 Introduction of CFSR dataset 

    The CFSR dataset is provided by American National Environmental Forecasting 

Center (Saha et al.,2010), which is an global reanalysis dataset with high resolution 

covering between 98°34′-101°09′E and 37°43′-39°06′N (atmospheric horizontal 

resolution is T382, about 38km, 64 floors in vertical). There are 15 interpolating 

points (CF1 – CF15) in the study region (the distribution of interpolating points is 

shown in Figure 4). The space resolution is 0.313°*0.313° and the temporal resolution 

is daily time step from 1st Jan, 2008 to 31th Dec, 2013, including precipitation, 

maximum/minimum temperature, wind speed, relative humidity and solar radiation. 

The official website of SWAT model also recommends using CFSR dataset to drive 

and build model globally. However, the effectiveness of driving SWAT model by 

CFSR dataset has not been verified systematically in China. 

2.3.2 Introduction of CMADS dataset  

    CMADS is a new dataset developed by this study, which is based on CLDAS 

data assimilation technology. CLDAS assimilation system fuses multi-source data 

such as satellite observation, land surface observation and numerical products (Meng 

et al., 2017, Shi et al., 2008, Shi et al., 2011, Zhang et al., 2013). This study built 

CMADS dataset (temporal resolution: day by day; spatial resolution: 1/3°; time scale: 

2008-2013) by using data loop nesting, resampling and bilinear interpolation methods. 

The dataset was formatted to be consistent with SWAT model requirement. 
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Nevertheless, the CMADS dataset consists of two formats (i.e. .dbf and .txt), which 

can be easily converted for use in other hydrological models. The first version of 

CMADS dataset covers the whole East Asian (0N~65N, 60E~160E). The spatial 

resolution of CMADS V1.0, CMADS V1.1, CMADS V1.2 and CMADS V1.3 are 

0.333, 0.25, 0.125 and 0.0625 degree, respectively at daily time step from 2008 to 

2014. Due to the restrictions of SWAT model itself (the number of meteorological 

stations should not exceed 500), the study chose CMADS V1.0 (which has a low 

resolution ratio) as one of the forces of SWAT model. The spatial range of CMADS 

lies between 0N and 65N, 60E and 160E, consisting of 300*195 grid points. Totally, 

58500 stations are used for analysis in East Asia area and each station includes daily 

average temperature, daily maximum/minimum temperature, daily accumulative 

precipitation, daily average solar radiation, daily average air pressure and daily 

average wind speed. 

2.3.2.1 CMADS evaluation in China 
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A) surface temperature bias evaluation in 2012 B) root-mean-square error evaluation of land surface temperature in 2012 

C) bias evaluation of air pressure in 2012 D) root-mean-square error evaluation of air pressure in 2012 E) bias evaluation 

of relative humidity in 2012 F) root-mean-square error evaluation of relative humidity in 2012 G) bias evaluation of 

surface wind speed in 2012 H) root-mean-square error evaluation of surface wind speed in 2012 

Fig. 2. Evaluation of CMADS dataset in China 

    In order to verify the applicability of CMADS in China, we used bilinear 

interpolation method to compare CMADS dataset with elements from national 
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automatic stations of China Meteorological Administration (2421 stations in total). 

During the validation process, we carried out quality controls (including region 

threshold, climate threshold value and time-space consistency check) to ensure 

resolution ratio to be 98.9%. 

Figure 2(a-f) shows the spatial distribution of bias and root-mean-square error of 

climatic variables between CMADS dataset and national automatic stations. It is 

found that CMADS can reflect spatial distribution of land surface elements in China 

well. Firstly, the temperature bias ranges from-0.5K to 0.5K in China and in 

extremely specific stations occurs large errors such as -4K error in Qinghai-Tibet 

Plateau.The total root-mean-square error of CMADS land surface temperature in 

China ranges from 0.5K to2.0K in western China (especially in Xinjiang and Tibet), 

while in South and Southeast China the error is majorly smaller than 0.5K. Secondly, 

from figure 2c we can see that the bias of air pressure is smaller in east than in west, 

ranging from 0Hpa ta 5Hpa in eastern China, Yangtze River and Huai River area; 

while the bias is between 0Hpa and 17Hpa in Southwest and Northwest China. In 

most areas of China the root-mean-square error of air pressure is under 11Hpa (under 

3Hpa in northwestern region, under 5Hpa in northeastern, northern and eastern China). 

Thirdly, the bias distribution of CMADS relative humidity in China (Figure 2e) is 

between -2% and -6%, while in northwestern, southwestern and northern China, the 

bias is mainly negative (between 1% and -4%). The distribution of root-mean-square 

error of relative humidity in China is displayed in Figure 3f, showing that the error is 

around 3%~9% in most areas of China, while some stations in Xinjiang area, the 
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middle area of northwestern region, central China and the middle area of 

southwestern region hasa 7%-9% root-mean-square error. Fourthly, the bias and 

root-mean-square error of CMADS surface wind speed are displayed in Figure 3g-h. 

It is found that bias is between -1m/s and 0.75m/s. In Jiang huai region, the middle 

area of southwestern China and the southern area of North China, the bias is positive 

(0m/s-0.75m/s). The root-mean-square error of CMADS surface wind speed performs 

well in most areas, which is between 0.5m/s and 1.0m/s. In some stations of 

southwestern, southeastern and northern China, the error reaches up to 1.0m/s-1.5m/s. 

In conclusion, after evaluating the accuracy of CMADS data in China against national 

automatic stations, we can see that CMADS dataset match ES the observations well.  

   In this study, SWAT model requires 11 interpolated stations (CM1-CM11) of 

CMADS V1.0 (resolution ration: 0.333°). The distribution of multi-annual total 

precipitation and maximum/minimum temperature of CMADS in Ying Luoxia River 

Basin is shown in Figure 4. The study emphasizes on verifying the utility of CMADS 

dataset for driving hydrological model in China. Information of the three different 

meteorological forcing datasets is shown in Table 2. 

Table 2 Information of three kinds of atmospheric forcing data 

Dataset TWS CFSR  CMADS  

Elements Daily average air pressure, 

daily average wind speed, 

daily average temperature, 

daily average relative 

humidity, daily 

maximum/minimum 

temperature, 20-20 

precipitation and sunshine 

duration 

Daily accumulative 

precipitation, daily 

maximum/minimum 

temperature, daily average wind 

speed, daily average relative 

humidity and daily accumulative 

solar radiation 

Daily maximum/minimum 

temperature, daily average wind 

speed, daily average relative 

humidity, daily accumulative 

precipitation and daily 

accumulative solar radiation 

Data original spatial range  4.00N～53,31N global 0 N～65N,60E～160E 
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73.40E～135.05E 

Data spatial range of this 

study 

37 N～39 N, 98 E～101 E 24.5.00N～57.00N 

44.00E～129.00E 

37.5 N～39.17 N,  

98.5 E～101.17 E 

Data timescale 2008.1.1-2013.12.31 2008.1.1-2013.12.31 2008.1.1-2013.12.31 

Data original resolution ratio / 0.313°, 0.5°, 1.0°, 1.9°, 2.5°  0.333°,0.25°,0.125°,0.0625° 

resolution ratio of this study / 0.313° 0.333° 

No. of stations imported by 

SWAT model 

4(T1-T4) 15(CF1-CF15) 11(CM1-CM11) 

 

    Through the above analysis we find that there are few meteorological stations in 

western China, which can not satisfy large-scale hydrological simulation. Compared 

to TWS, CMADS and CFSR exhibit obvious advantages. This study used 11 and 15 

meteorological stations from CMADS and CFSR dataset respectively, while only 4 

TWS (T1-T4) were available in this basin. Notably, we found that there were missing 

values in each station, with the missing ratio up to 3.395%, 8.762%, 4.654% and 

7.448% in Tuo Le(T1), Zhang Ye(T2), Ye Niugou(T3), Qilian(T4), respectively. 

However, there is no missing value of CMADS and CFSR dataset driven by SWAT 

model, which is the advantage of assimilation dataset compared to TWS.  

 

Fig. 3. The range of CMADS V1.0 dataset and the space position in this study 
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Fig. 4.Distribution of CMADS elements (such as annual precipitation, the highest and lowest temperature distribution) in 

the Heihe River Basin (2009-2013) 

   In order to quantitatively analyze the differences of two kinds of interpolated 

datasets (CFSR and CMADS) in Heihe River Basin, we extracted the spatial 

coordinates of four traditional weather stations in the study area (Figure 4), evaluated 

and verified the utility of CMADS and CSFR dataset compared to TWS observed data. 

The four interpolating points are national meteorological stations (T1- space 

coordinates: 38.82,98.42；T2-space coordinates：39.09,100.29；T3-space coordinates：

38.42,99.59,T4-space coordinates：38.18,100.25). After analyzing data extracted from 

CFSR and CMADS compared with TWS data, we found that (Figure 5, 6) the fitting 

goodness between CMADS and TWS was better than that between CFSR and TWS 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2017                   doi:10.20944/preprints201612.0091.v2

http://dx.doi.org/10.20944/preprints201612.0091.v2


 20 of 47 

and there were underestimated precipitation of CMADS at four stations from May to 

September between 2009 and 2011. The maximum error of precipitation was 0.28mm 

while correlation coefficient was higher than 0.992, which indicated that the fitting 

goodness between CMADS and TWS dataset is high. Compared with CMADS, the 

performance of CFSR were not good. Precipitation at four interpolating points during 

the five years (2009-2013) was all over-estimated, with the largest error up 

to1.15mm/month. In addition, maximum temperatures at four stations were all 

underestimated, with the largest error of -9.41 /month℃  (Figure 5 T4) and smallest 

error of -5.93 /month. The evaluation r℃ esults are shown in Table 3. 

 
Fig. 5. The cumulative average monthly (from year 2009 to 2013) rainfall of TWS, CMADS and CFSR at four sites (T1-T4) 
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Fig. 6.Themaximum and minimum temperature (from year 2009 to 2013) of TWS, CMADS and CFSR at four sites (T1-T4)  

Table 3 Correlation Analysis between CFSR and CMDAS and TWS  

Dataset 

elements 

TWS(T1) TWS(T2) TWS(T3) TWS(T4) 

R2 CORR BIAS R2 CORR BIAS R2 CORR BIAS R2 CORR BIAS 

CF-precipitation 0.76 0.514 0.56 0.263 0.873 0.60 0.702 0.891 1.15 0.626 0.791 1.02 

CM-precipitation 0.85 0.903 -0.16 0.816 0.924 0.02 0.832 0.912 -0.28 0.924 0.961 -0.04 

CF-maximum 

temperature 

0.981 0.991 -6.64 0.988 0.994 -5.93 0.986 0.993 -5.72 0.895 0.946 -9.41 

CM-maximum 

temperature 

0.997 0.999 -1.10 0.998 0.999 -1.06 0.996 0.998 -0.78 0.996 0.999 -0.99 

CF-minimum 

temperature 

0.984 0.992 -0.56 0.986 0.993 -0.70 0.974 0.987 2.22 0.904 0.950 -3.42 

CM-minimum 

temperature 

0.996 0.998 0.73 0.997 0.999 0.82 0.992 0.996 1.07 0.997 0.998 0.40 

Note:CF, CM are CFSR and CMADS.R2, CORR,BIAS are deterministic coefficient, correlation coefficient and biasrespectively. 

Negative bias shows the value underestimated TWS observations, and the positive bias shows the value over-estimated 

observations. 

   The SWAT model was driven with the above datasets (TWS, CMADS and CFSR) 

to further investigate the hydrological performances of CMADS. 

2.4 Introduction of SWAT model 

   The SWAT model is a semi-distributed model, which can simulate basin-scale 

hydrology, sediment and non-point source pollution (Neitsch et al., 2009). Different 

from other hydrological models, SWAT model separates one basin into several HRUs 

and set areas with the same land use, soil category and gradient as one independent 

HRU. SWAT model has been widely used throughout the world since publication 

(Zhang et al., 2013). 

 
3SWAT model settings 

   The study area is divided into 24 sub-basins based on DEM. Then SWAT model 

divides each sub-basin into several HRUs. In SWAT model, water balance of each 

HRU is calculated based on surface runoff, interflow, base flow, infiltration, river 
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transfer loss and evapotranspiration. The combinations of three different forcing data 

(CMADS, CFSR and TWS) forcing SWAT model are referred to as CMADS+SWAT 

mode, CFSR+SWAT mode and TWS+SWAT mode hereafter. 

   All three modes use Penman-Monteith method to calculate potential 

evapotranspiration, which requires solar radiation, temperature, relative humidity and 

wind speed. Since there is no solar radiation data in TWS dataset, the solar radiation 

of TWS+SWAT mode is generated by the weather generator (predicted by Markov) 

embedded in SWAT itself. Given daily input data, all three modes adopt Soil 

Conservation Service’s curve (SCS) to calculate surface runoff and SCS curve, which 

is a non-linear function between precipitation and initial loss. Surface runoff is 

calculated in each HRU and finally routes into the main channel. Finally, we choose 

river storage method based on continuity equation to calculate main channel water. 

    Based on Centriod interpolation principle, SWAT model can interpolate spatial 

discrete meteorological data at single point into the whole basin (Wood et al.,2004). 

To reduce errors caused by spatial dispersion and interpolation (especially in 

mountain area) and increase precipitation accuracy of HRU and natural sub-basin, this 

study combines information extracted from Heihe River basin evaluation and marks 

off several evaluation areas. Precipitation gradient can simulate precipitation 

distribution in different evaluation areas well, as after evaluation adjustment each 

basin’s precipitation will be generated through model output. 

    This study chooses the simulation period as 2008-2013, withyear 2008 for model 

spin-up. Here, the calibration period is from 2009 to 2010, while the verification 
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period is from 2011 to 2013. 

3.1 Sensitivity analysis 

   The study used SWAT-CUP software developed by EWAGE (Abbaspour et al., 

2007b) to analyze and calibrate parameters of three modes. SUFI-2 algorithm 

(Abbaspour et al., 2004, Abbaspour et al., 2007a) was chosen to run SWAT-CUP 

Software (Abbaspour, 2011), including model calibration, validation, sensitivity 

analysis and uncertainty analysis. The algorithm involves all kinds of uncertainties, 

such as parameters, conceptual models, input and so on, in order to reach a 95% 

prediction uncertainty (95PPU) for the majority of measured data. The 95PPU is 

calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output 

variable obtained through Latin hypercube sampling. Sensitivity analysis was used to 

analyze which parameter or which kind of parameters was most sensitive. In this 

study, we analyzed parameters related to runoff (26 parameters in total). After that we 

obtained the rank of sensitive parameters driven by three kinds of meteorological data 

as shown in Table 4. 

 

3.2 Model calibration 

   The study chose the first 14 sensitive parameters for calibration according to 

significant parameters and simulated conditions (Abbaspour, et al., 2015) between 

2009 and 2010 and verified the model performance from 2011 to 2013 driven by 

different datasets. After being calibrated at the monthly scale, we carried out 

parameter calibration with daily data and verified daily runoff. During this process, 

we firstly considered the ratio between annual evaporation and runoff, and then 

ensured a reasonable level of simulated total evaporation, precipitation and runoff. 

Besides, when calibrating three hydrological stations (Ying Luoxia, ZhaMashenke 
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and Qilian Mountain), we calibrated Qilian Mountain station at first, then 

ZhaMashenke station and finally Ying Luoxia station. This is because compared with 

the other two stations, Ying Luoxia station locates in the downstream, and then the 

accurate calibration of upstream parameters can be a good foundation for downstream 

calibration. 

    It is found that there is difference between the best parameters of three modes. 

Table 4 is the final value and sensitive ranking of model parameters. Analysis shows 

that parameter sensitivity rank has close relation with atmospheric forcing data, model 

itself and observed data. 

Table 4 Final value and sensitive ranking of model parameters  

Variable name Parameter definition TWS+SWATmode CFSR+SWATmode CMADS+SWATmode 

Parameter 

final value 

Sensitive 

ranking 

Parameter 

final value 

Sensitive 

ranking 

Parameter 

final value 

Sensitive 

ranking 

CN2.mgt SCSrunoff curve value 69 13 55 13 64 10 

ALPHA_BF.gw Baseflow αfactor 0.337546 1 0.182795 6 0.437614 6 

GW_DELAY.gw Delay time (day) of 

aquifer replenishment 

307.377808 10 476.718750 11 295.687683 14 

GWQMN.gw Water level threshold 

(mm) of shallow aquifer 

when groundwater 

flowing into the main 

river channel 

0.612660 14 0.411690 9 -0.116476 3 

GW_REVAP.gw Evaporation coefficient 

of groundwater 

0.096742 9 -0.005901 12 0.146628 12 

ESCO.hru Compensation factor of 

soil evaporation 

1.072486 12 1.018231 10 1.008041 13 

CH_N(2).rte Manning value of main 

river channel 

-0.038737 4 0.299990 1 0.118944 5 

CH_K2.rte Effective permeability of 

river channel 

39.187901 3 29.086340 4 90.607780 1 

ALPHA_BNK.rte Recession constant value 

of base flow 

0.142319 11 0.033505 14 0.134332 11 

SFTMP Average temperature (℃) 

at snowing days 

6.248940 8 -1.810063 2 5.092002 8 

PLAPS Lapse rate of 

precipitation /(mm .km-1) 

136.724258 7 178.032104 8 136.339050 2 

SMFMN  Snowmelt factor at 21st 

December/mm ·(day-℃)-1 

8.911116 5 7.507036 5 9.612769 9 

SMFMX Snowmelt factor at 21st 

June 

0.164362 6 5.421363 3 0.109247 4 
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TLAPS Lapse rate of 

temperature/(℃·km-1) 

-4.730556 2 -8.429128 7 -6.115168 7 

 

3.3Model assessment 

   The study usestwo evaluation index: Nash-Sutcliffe Efficiency (NSE) and 

determination efficiency (R2) (Nash et al., 1970), which are both widely used to assess 

model performance. 

   Nash-Sutcliffe Efficiency is a normal statistic equation, which reflects fitting 

degree between observed data and simulated results (Schaefli et al., 2007). NSE can 

be calculated with equation (1): 

2
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m s i
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
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   Where Q is runoff variable, mQ and sQ  represent runoff observed value and 

simulated value respectively and mQ  is runoff average observed value. NSE ranges 

from -∞ to 1.When NSE equals 1, it denotes that observed data fits well with 

simulated data. When NSE is between 0.1 and 1, indicating simulation results can be 

accepted. When NSE is smaller than 0, we deem that simulation result is bad. 

    Determination efficiency: it reflects the correlation degree between measured 

variables. R2can be calculated by equation (2): 
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Where mQ and sQ  represent runoff observed value and simulated value 

respectively, i is the ith simulated or observed value. 

Some studies choose R2＞0.5and NSE＞0.5 as the satisfactory criterion of 
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SWAT model (Santhi et al.,2001), while others think that NSE＞0.4 can also be the 

satisfactory criterion (Ahmad et al.,2011). This study adoptes evaluation criterion by 

Moriasi et al (Moriasi et al., 2007). Namely, during model calibration period, if 

monthly-scale simulation result NSE≥ 0.65 or daily-scale result NSE≥ 0. 5, then the 

results can be acceptable (Santhi et al., 2001). 

 

4Results 
4.1 Daily-scale and monthly-scale runoff simulation results of three kinds of 
modes at three sub-basins 

This study used three different modes (CMADS+SWAT mode, CFSR+SWAT 

mode and TWS+SWAT mode) to obtain monthly and daily runoff at three stations 

(Qilian Mountains, ZhaMashenke and Ying Luoxia). Based onthe model evaluation 

index by Moriasi (Moriasi et al.,2007) and Santhi (Santhi et al.,2001), it is found that 

at the monthly-scale, CMADS+SWAT mode and TWS+SWAT mode both achieved 

satisfactory performance at three stations (shown in Table 5). At the monthly-scale 

(Figure 7, Figure 8 and Figure 9), the simulation results of CMADS+SWAT mode 

(Figure 8A) were better than the results of TWS+SWAT mode at ZhaMashenke 

station (Figure 8B). Due to no meteorological stations at ZhaMashenke, CMADS 

dataset had greater advantages than TWS dataset. However, the monthly simulation 

results of CMADS+SWAT mode were slightly over-estimated compared with 

TWS+SWAT mode at No.2 sub-basin (Ying Luoxia), which might be caused by more 

precipitation (Figure 16C) of CMADS+SWAT mode (May-Oct each year) than 

TWS+SWAT mode. The over-estimation came from centroid interpolation method 

and elevation with secondary adjustment of SWAT model itself and meteorological 
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data. Nevertheless, the slightly over-estimated precipitation of CMADS at No.2 

sub-basin (Ying Luoxia) did not cause larger errors in model simulations (Table 5). 

 

A),CMADS+SWAT mode B),TWS+SWAT mode C),CFSR+SWAT mode 

Fig. 7.Simulation results of monthly average runoff of three different modes at Qilian Mountain control station (2009-2013) 

 

A),CMADS+SWAT mode B),TWS+SWAT mode C),CFSR+SWAT mode 

Fig. 8.Simulation results of monthly average runoff of three different modes at ZhaMashenke control station (2009-2013) 
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A),CMADS+SWAT mode B),TWS+SWAT mode C), CFSR+SWAT mode 

Fig. 9.Simulation results of monthly average runoff of three different modes at Ying Luoxia control station (2009-2013) 

In addition, we found that the simulation effects of CFSR+SWAT model at three 

stations were unsatisfactory. Runoff was overestimated compared with observed data 

with the largest NSE efficiency coefficient being 0.49 (Figure 7C, 8C, 9C). 

Furthermore, runoff overestimation existed during the increasing runoff period from 

October to August next year at all three sub-basins. In September each year, 

simulation results of CFSR+SWAT mode were underestimated. Because the 

distribution of precipitation within the year was overestimated, the base flow was also 

overestimated each year (Figure 7C, 8C, 9C). This was because CFSR data was not 

corrected against observed meteorological stations in China, then precipitation was 

overestimated. Although runoff was simulated well after model parameter calibration, 

SFSR+SWAT mode tendedto have overestimated evaporation (Figure 5), which might 

also be related to the underestimation of maximum temperature (Figure 6). Due to the 

over estimation of CFSR precipitation, evaporation exceeded local annual evaporation 

greatly when calibrating CFSR+SWAT mode (Figure 14). 
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A),CMADS+SWAT mode B),TWS+SWAT mode C),CFSR+SWAT mode 

Fig. 10. Daily runoff simulation results of three different modes at Qilian Mountain control station (2009-2013) 

 

 

A),CMADS+SWAT mode B),TWS+SWAT mode C),CFSR+SWAT mode 

Fig. 11. Daily runoff simulation results of three different modes at ZhaMashenke control station (2009-2013) 
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A),CMADS+SWAT mode B),TWS+SWAT mode C),CFSR+SWAT mode 

Fig. 12.Simulation results of monthly average runoff of three different modes at Ying Luoxia control station (2009-2013) 

 

After monthly-scale calibration at three sub-basins (Figure 7 to Figure 9), we 

introduced the optimum parameters into SWAT model to continue calibrating and 

adjusting three modes at daily scale. Results indicated that similar to monthly 

simulation, both CMADS+SWAT mode and TWS+SWAT mode performed well at 

daily scale (Table 5, Figure 10, Figure 11 and Figure 12). Runoff simulation results of 

the above two modes exhibiteda good consistency in the daily hydrological maps of 

three stations. However, the simulated peak value of TWS+SWAT mode were 

underestimated both at Qilian Mountain station (Figure 10B) and ZhaMashenke 

station (Figure 11B), while the peak was slightly overestimated at Ying Luoxia station. 

The daily simulated results of CMADS+SWAT mode at Qilian Mountain (NS= 0.58, 

R2= 0.66) could be accepted. Meanwhile, models showed satisfactory performance at 

Ying Luoxia (NS= 0.77, R2= 0.80) and ZhaMashenke (NS=0.75, R2=0.78). At 

ZhaMashenke (from March to April), the daily simulated results of CMADS+SWAT 
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mode were higher than observed results and had larger amplitude. However, the 

simulation results were better than TWS+SWAT mode at other periods. Furthermore, 

we also found that in terms of peak simulation, the accuracy of CMADS+SWAT mode 

at Qilian Mountain and ZhaMashenke was higher than that of TWS+SWAT mode and 

CFSR+SWAT mode. Besides, the simulation of CMADS+SWAT mode agreed better 

with observed data than the other two modes, especially at Qilian Mountain and 

ZhaMashenke control stations. All of these indicated that compared with CMADS 

data, traditional meteorological stations could not capture spatial heterogeneity based 

on limited stations, which limited its application in simulating basin water balance. 

    By comparing monthly-scale simulation results with daily-scale simulation 

results of SWAT model driven by three kinds of datasets (TWS, CSFR and 

CMADS),we found that CMADS+SWAT mode could simulate historical process of 

Heihe River Basin runoff well, while CFSR that has been used widely around the 

world performed bad. Figure 5, Figure 6 and Table 3 gave some verification. 

Table 5 Evaluation of monthly and daily matching results driven by three different modes 

 Driving data (Sub20)Qilian Mountain 

control station 

(Sub13)ZhaMashenke control 

station 

(Sub2)Ying Luoxia control 

station 

NS R2 NS R2 NS R2 

 

Monthly 

CFSR +SWAT 0.32 0.21 0.49 0.50 0.45 0.46 

CMADS+SWAT 0.75 0.85 0.95 0.95 0.92 0.95 

TWS+SWAT 0.80 0.87 0.92 0.94 0.96 0.97 

 

Daily 

CFSR+SWAT 0.26 0.27 0.35 0.38 0.45 0.49 

CMADS+SWAT 0.58 0.66 0.75 0.78 0.77 0.80 

TWS+SWAT 0.62 0.68 0.74 0.77 0.77 0.79 

 
4.2 Monthly-scale runoff simulation results of three kinds of modes at three 
sub-basins in 5 years 

    After parameter calibration, the water yield (WYLD) of CFSR+SWAT mode 
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reached a similar level with other modes (Figure 14). However, Figure 16 showed that 

CFSR precipitation element can only be reflected in few large-scale precipitation 

modes. Similar to Figure 13A, although runoff result of CFSR+SWAT mode showed 

peak value in July, it did not display a good consistency with observation in other 

periods. In figure 13, CFSR+SWAT mode has overestimations during runoff rising 

period (Jan-Jun) and runoff declining period (Oct-Dec), which also occurred between 

July and September each year.  

 
Fig. 13. Comparison between five-year average monthly runoff (2009-2013) simulated results from three different modes 

(TWS+SWAT, CFSR+SWAT and CMADS+SWAT) and observed value (a represents ZhaMashenke sub-basin, b represents Qilian 

Mountain sub-basin, c represents Ying Luoxia sub-basin and d represents basin average value) 

For TWS and CMADS, from Figure 13A, C, D we can see that both 

TWS+SWAT mode and CMADS+SWAT mode were slightly underestimated between 

March and May (runoff rising period). Compared with CMADS+SWAT mode, 

TWS+SWAT mode has slight underestimation in November (runoff decline period). 

In general, both TWS+SWAT mode and CMADS+SWAT mode reproduced 

themonthly average peak value of runoff observation well. TWS+SWAT mode 

showed over-estimation in January, April-May and October-December, but occured 

large underestimation from mid-May to September. 
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4.3 Differences caused by water balance 

    Water balance analysis is an important tool for evaluating water resources in the 

world. It helps us to understand quality differences of different forcing data (Zhang et 

al., 2012, Silva et al., 2011). After analyzing water balance components in three 

sub-basins of Heihe River Basin by using three modes we found that the 

overestimated CFSR precipitation as inputs of SWAT model leaded to larger 

evaporation and higher estimation of water balance than the other two kinds of 

datasets (Figure 14). 

 
Fig. 14.Water balance chart in Heihe River Basin of three modes(TWS+SWAT, CFSR+SWAT and CMADS+SWAT),, where 

PREC、SURQ、LATQ、GWQ、PERCOLATE、SW、ET and WYLD represent precipitation, land surface runoff, side flow, 

subsurface flow, lateral seepage flow, soil water, real evaporation and runoff. 

     Figure 14 indicated that precipitation distribution of CFSR in three sub-basins 

was much higher than other two datasets (CMADS and TWS). Annual average 

precipitation of CFSR was 864.35mm, while precipitation of CMADS and TWS were 

442.45mm and 458.48mm respectively. Evidences showed that annual precipitation in 

the main stream area of Heihe River was 459.7mm (Yin et al., 2013), which was 

consistent with the overestimated precipitation of CFSR. TWS+SWAT mode and 

CMADS+SWAT mode partitioned 42.6% and 43.3% of precipitation into runoff 
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respectively, while only 25.5% of precipitation of CFSR+SWAT mode was partitioned 

to runoff. After comparison we found that the proportion of side flow, subsurface flow 

and lateral seepage flow in the runoff generation period were higher for CFSR+SWAT 

mode than for CMADS+SWAT mode and TWS+SWAT mode. The proportion of side 

flow, subsurface flow and lateral seepage flow in total runoff generation for 

CFSR+SWAT mode was 44.2%, 39.9% and 44.17%, respectively. 

    Results also indicated that CFSR+SWAT mode with overestimated precipitation 

produced smaller soil moisture compared with TWS+SWAT and CMADS+SWAT 

mode.This might be related to large evaporation of CFSR+SWAT mode. On the 

contrary, the actual evapotranspiration of CFSR+SWAT mode was much larger than 

the other two modes (annual average evapotranspiration of CFSR+SWAT mode was 

498.27mm, while for CMADS+SWAT and TWS+SWAT mode, the annual average 

evapotranspiration were 245.18mm and 253.09mm respectively). However, statistics 

showed that annual average evapotranspiration in Heihe River mountain area and 

main stream area is around 279.3~294.1mm (Yin et al., 2013). In order to fit water 

balance of CFSR+SWAT mode with observed runoff, it caused overestimated 

precipitation of CFSR+SWAT mode resulting in increasing evaporation, and then 

caused soil moisture to be lower. In conclusion, although water balance of 

CFSR+SWAT mode is similar to the other two modes, poor performance of 

evaporation and precipitation decrease the qualityof CFSR in Heihe River basin 

greatly. 
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Fig. 15. Bias distribution of annual average precipitation of CMADS, CFSR and TWS dataset in different sub-basins 

    Precipitation is an important factor controlling watershed runoff process. In order 

to study whether CMADS dataset can reflect the real situation of Heihe River Basin 

after driving SWAT model, this study conducted bias calculation of precipitation 

distribution in three sub-basins generated from SWAT model (Figure 15). Results 

showed that annual average precipitation produced by CMADS+SWAT mode was 

bigger than TWS+SWAT mode only in Ying Luoxia basin, while in other sub-basins it 

was smaller than TWS+SWAT mode and CFSR+SWAT mode. Precipitation of the 

above three kinds of datasets was obtained by evaluation correction and barycenter 

interpolation of SWAT model. Due to a lack of observed data, it is difficult to judge 

which kind of data’s precipitation is more reliable. So it can only be estimated by 

using other methods. 

    To quantitatively investigate how SWAT model built-in evaluation module 

influences precipitation distribution, we analyzed precipitation of three sub-basins 

with or without evaluation module (Figure 16). Where “-E” represents precipitation 
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after evaluation adjustment of SWAT model and “-NE” represents precipitation 

without evaluation adjustment. We found that there existed some consistent relations 

between precipitation distribution (Figure 16) and previous water balance (Figure 14). 

Precipitation of CFSR dataset at three natural sub-basins exceeded TWS dataset and 

CMADS dataset. Precipitation of CFSR dataset at three sub-basins were 526.42mm、

1012.982mm and 1053.66mm respectively, which were much larger than local 

multi-annual average precipitation (459.7mm) (Yin et al.,2013). From Figure 12 we 

found that compared with TWS, precipitation peak value of CFSR and CMADS was 

more concentrated, especially in Qilian Mountain basin (Figure 16a). 

 

Fig. 16. Precipitation distribution of CMADS, CFSR and TWS dataset with or without evaluation module (A. Qilian Mountain, B. 

ZhaMashenke, C. Ying Luoxia) 

    After evaluation module was applied in SWAT model, there was a certain 

increaseof precipitation, which gradually increased with close to July. Besides, 

precipitation of CMADS+SWAT mode in Ying Luoxia between May and September 

was about 39.7% higher than that of TWS+SWAT mode (Figure 16C). It caused 

bigger overestimated monthly runoff of CMADS+SWAT mode at Ying Luoxia 

sub-basin than TWS+SWAT mode. However, R2 reached 0.8 in daily runoff 
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simulation of CMADS+SWAT mode, which exceeded that of TWS+SWAT mode 

(Table 5). It is also found that if weather stations are far away from hydrological 

stations or the area lacks of weather stations, CMADS+SWAT mode would achieve 

better results. Furthermore, Figure 15B showed that precipitation of CMADS+SWAT 

mode was smaller than TWS+SWAT mode between April and June, August and 

October; while fitting results of simulated peak value and base flow of 

CMADS+SWAT mode in ZhaMashenke sub-basin (Figure 8a and Figure 11a) were 

better than TWS+SWAT mode (Figure 8b, Figure 11b, Table 5 and Figure 13b). 

Simulation results of CMADS+SWAT mode and TWS+SWAT mode were both 

satisfactory in Qilian Mountain sub-basin. 

4.4 Relative elements analysis of CMADS driving SWAT model in Heihe River Basin 

   The spring flood of Heihe River Basin is from March to April, and the summer 

flood is in August. To analyze the relations between water balance components such 

as soil moisture, snowmelt and runoff generation in spring and summer flood with 

CMADS dataset, the study used CMADS+SWAT mode to analyze time-space 

relationship between daily soil moisture, snowmelt and runoff generation during five 

years (2009-2013) in Heihe River Basin. 

 

 
(a) (b) 
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The upper three curves in the right broken line chart are snowmelt processing lines and the lower three curves are soil water content changing lines. Green: 

No.2 sub-basin (Ying Luoxia), Blue: No. 13 sub-basin (ZhaMashenke), Red: No.20 sub-basin (Qilian) 

Fig. 17. Figure of space-time relationships between snowmelt and soil humidity of CMADS+SWAT mode 

    Figure 17 (a-e) showed the spatial distribution of snowmelt in Heihe River Basin 

on 2nd April each year. The two-dimension broken line chart in the right hand showed 

the changing relations between snowmelt and soil moisture in three basins (Qilian 

Mountain, ZhaMashenke and Ying Luoxia). It is found that the increase of soil 

moisture in April had important relations with snowmelt, which was consistent with 

the spring flood of Heihe River Basin. Besides, we also found that the upstream 

snowmelt greatly changed soil moisture in the whole basin. Soil moisture increase 

was more obvious in areas with large snowmelt; soil in the downstream stations (such 

as Ying Luoxia) would become wetter during snowmelt period. Figure 17f also 

indicated that on 1st July, 2013, Qilian Mountain Basin experienced higher amount of 

snowmelt, although this period was not the snowmelt concentration period. Therefore, 

(c) (d) 

(e) (f) 
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we carried out correlation analysis of snowmelt and runoff generation between July 

and August in recent five years (2009-2013) simulated by CMADS+SWAT mode in 

Heihe River Basin (Figure 18). 

 

 

 

 
The upper three curves in the right broken line chart are runoff generation lines and the lower three curves are snowmelt 

processing lines. Green: No.2 sub-basin (Ying Luoxia), Blue: No. 13 sub-basin (ZhaMashenke), Red:No.20 sub-basin (Qilian 

Mountain) 

Fig. 18. Analysis graph of relationships between snowmelt and soil humidity of CMADS+SWAT mode 

    Figure 18 (a-f) showed the spatial distribution of WYLD at the end of July or the 

beginning of August each year in Heihe River Basin. The two-dimension broken line 

(a) (b) 

(c) (d) 

(e) (f) 
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chart in the right hand showed the changing relations between snowmelt and WYLD 

in three basins (Qilian Mountain, ZhaMashenke and Ying Luoxia). Analysis indicated 

that WYLD of Heihe River Basin would reach the peak value between July and 

September. As shown in Figure 18a-f, snowmelt contributed little to WYLD between 

July and September. Comparing Figure 6 and Figure 16 we found that precipitation 

reached maximum between July and September in Heihe River Basin. Figure 17(a-f) 

also indicated that larger WYLD occurred more often in the middle and high altitude. 

In addition, WYLD bias was large in different sub-basins, indicating that there were 

more WYLD in the high altitude than in the low/middle altitude (Figure 18). This 

might be caused by distribution of precipitation in the mountains as well as snowmelt 

in cold highland area. 

5 Discussion and Conclusions 

   The study used CMADS, TWS and CFSR datasets to force the SWAT model and 

evaluated their performance for stream flow simulation in the Heihe River basin. It is 

found that CFSR overestimates precipitation, especially in summer, but 

underestimates mean annual precipitation. In addition, the CMADS data performes 

better than CFSR regarding both accuracy and spatial resolution, as CMADS 

introduces advanced assimilation technology and is bias corrected through China’s 

national automatic observation stations. For TWS, it does not perform well in China 

especially in Western China where climate stations are sparse. 

For a large river basin, quantitative analysis of water balance components is 

essential for supporting ecological and hydrological managements. TWS data often 

cannot satisfy current large-scale hydrological modeling needs in regions with sparse 
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observations. Therefore, when there are scarce or even no weather stations in the 

basin, CMADS will be a valuable source to provide atmospheric forcing data for 

hydrological modeling exercises. Another advantage of CMADS compared with TWS 

is that it contains complete climate forcing data over a specific time period without 

missing values, which helps to save much time spent on data quality assurance. 

Although we only demonstrate the value of CMADS for improving SWAT model, it 

can also be easily reformatted for other hydrological models.  

The CMADS, which is free of charge and can be easily accessed through internet 

(CMADSV1.0 at http://westdc.westgis.ac.cn/data/6aa7fe47-a8a1-42b6-ba49-62fb330 

50492 and CMADSV1.1 at http://westdc.westgis.ac.cn/data/647e6569-bd21-4bea-8ac 

c-5d38bc4cd3c0), is expected to be a valuable source of climate forcing data for 

driving hydrologic models. 
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