黑河生态水文遥感试验:黑河流域1km/5天合成植被指数(NDVI/EVI)数据集-2015

黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2015年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。在黑河中游农田、森林区域的验证结果表明,联合多时相、多角度观测数据的NDVI/EVI合成结果与地面实测数据具有较好的一致性(RMSE=0.105)。与MODIS MOD13A2产品的时间序列对比分析,充分显示了时间分辨率从16天提高到5天时,稳定的高精度的植被指数对植被生长细节的细致描述。总之,黑河流域1km/5day合成植被指数(NDVI/EVI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。

黑河生态水文遥感试验:黑河流域1km/5天合成叶面积指数(LAI)数据集-2015

黑河流域2015年1km/5天合成叶面积指数(LAI)数据集提供了2015年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PROSAIL模型,针对森林和山地植被采用坡面GOST模型。利用黑河上游森林和中游绿洲的地面实测数据生成的参考图,并将对应的高分辨率参考图升尺度到1km分辨率,与LAI产品进行比较,产品在农田和森林区域与参考值间均具有良好的相关性,总体精度基本满足GCOS规定的误差不超过 (0.5, 20%)的精度阈值。将本产品与MODIS、GEOV1和GLASS等LAI产品进行交叉对比,相比较参考值而言,本LAI产品精度优于同类产品。总之,黑河流域1km/5天合成LAI数据集综合利用多源遥感数据以提高LAI参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。

黑河生态水文遥感试验:黑河流域1km/5天合成植被覆盖度(FVC)数据集 (2015)

黑河流域1km/5天合成植被覆盖度(FVC)数据集提供了2015年的5天FVC合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。将全国划分为不同植被区划、地类,分别计算植被指数(NDVI)与FVC的转换系数,采用计算的转换系数查找表和1km/5天合成NDVI产品生产区域1km/5天合成FVC产品。黑河流域1km/5天合成FVC产品通过高分辨率数据可以直接获得植被覆盖比例,减轻低分辨率数据异质性的影响;另外,选择植被生长变化的典型时期,通过对每一个像元时间序列植被指数进行拟合得到每个像元对应的生长曲线参数;再配合土地利用图和植被分类图,寻找区域的代表性均一像元用于训练植被指数的转换系数。通过与黑河流域高分辨率ASTER参考FVC结果相比,首先联合地面实测数据,利用尺度上推方法,将黑河流域ASTER产品聚合到 1km 尺度得到ASTER聚合FVC数据,并与Geoland2项目发布的基于SPOT VEGETATION遥感数据的FVC产品(简称GEOV1 FCOVER)进行间接比较,根据三种数据FVC时间序列曲线图,结果表明:GEOV1的结果较ASTER 影像联合地面实测的结果偏高,黑河流域1km/5天合成FVC产品结果位于两者之间,在实验区内黑河流域1km/5天合成FVC产品优于GEOV1产品。总之,黑河流域1km/5天合成FVC数据集综合利用多源遥感数据以提高FVC参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。

中国区域高时空分辨率地面气象要素驱动数据集(1979-2015)

中国区域地面气象要素数据集是中国科学院青藏高原研究所开发的一套近地面气象与环境要素再分析数据集。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。 各变量的物理意义: | 气象要素||变量名||单位||物理意义 | 近地面气温 ||temp|| K || 瞬时近地面(2m)气温 | 地表气压 || pres|| Pa || 瞬时地表气压 | 近地面空气比湿 || shum || kg/ kg ||瞬时近地面空气比湿 | 近地面全风速 || wind || m /s || 瞬时近地面(风速仪高度)全风速 | 向下短波辐射|| srad || W /平方米 || 3 小时平均 (-1.5hr ~ +1.5hr) 向下短波辐射 | 向下长波辐射||lrad ||W /平方米 ||3 小时平均 (-1.5hr ~ +1.5hr) 向下长波辐射 | 降水率||prec||mm/hr ||3 小时平均 (-3.0hr ~ 0.0hr) 降水率 更多信息,请参见随数据一同发布的《User’s Guide for China Meteorological Forcing Dataset》。 最新版本(01.06.0014)的主要变化有: 1. 将数据延伸到 2015 年 12 月(短波和长波数据例外,只到 2015 年 10 月,2015 年 11-12 月的数据系根据 GLDAS 数据插值得到,误差可能会偏大); 2. 设定风速最小值为 0.05 m/s; 3. 修正了之前辐射算法中的一个 bug,使我们的短波和长波数据在晨昏时段更合理。 4. 修正了降水数据的 bug,更改涉及的时段是 2011-2015 年。

AMSR-E全球陆表被动微波遥感发射率数据集(2002-2011)

地表微波发射率表征了地物向外发射微波辐射的能力,星载被动微波发射率可在宏观、大尺度上对陆表微波辐射进行整体表达,是被动微波地表参数定量反演中经验参数获取的重要基础数据,也是在大尺度上理解陆表微波辐射的一种途径。本数据集考虑到搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽数据作为输入,通过考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、统计分析、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明瞬时发射率的动态细节丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性符合自然物理过程的理解。 此套数据集包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽/可降水量等反演研究。数据的投影坐标采用标准的EASE-GRID投影,数据存储方式为二进制浮点型格点(矩阵大小为1383*586),数据获得之后可用ENVI/IDL等软件或者相应程序代码以二进制文件的方式读取。 所生产出的所有陆表发射率数据按照以下规则命名: RADI_AMSRE_EM##_yyymmdd_EG_V##.bin 例如文件名称:RADI_AMSRE_EM01_20060101_EG_V#其中 EM##: 01表示每日,05表示5天,10表示旬,HM表示半月,MO表示月 yyyymmdd: yyyy表示年份,mm表示月份,dd表示日期 V##: 版本号,如0.1, 1.0等,个位数为正式版 RADI: “中国科学院遥感与数字地球研究所”英文缩写 AMSRE: 高级微波扫描辐射计