中国地区被动微波SMMR亮度温度数据集(1978-1987)

本数据集主要包含Nimbus-7卫星携带的扫描式多通道微波辐射计(SMMR:Scanning Multichannel Microwave Radiometer)获得的被动微波亮度温度,包含1978年10月25日-1987年8月20日的06H、06V、10H、10V、18H、18V、21H、21V、37H、37V共十个微波通道的每天两次过境(升轨&降轨)亮度温度,其中H代表水平极化,V代表垂直极化。 1978年10月发射的Nimbus-7为太阳同步极轨卫星,搭载的微波传感器SMMR,是一台测量地表五个频率(6.6GHz,10.69GHz,18.0GHz,21.0GHz,37.0GHz)微波亮温的双极化微波辐射计。它以约50.3°固定入射角扫描地表,幅宽780km,并在正午12:00(升轨)与午夜24:00(降轨)通过赤道。SMMR时间分辨率为每日,但由于swath间距离较宽,大概每隔5-6天才会重访同一地表。 1、文件格式和命名: 每组数据均由遥感数据文件构成。 SMMR_Grid_China目录下的每组数据文件名及命名规则如下: SMMR-MLyyyydddA/D.subset.ccH/V(遥感数据) 其中:SMMR代表SMMR传感器;ML代表多通道低分辨率;yyyy代表年份;ddd代表该年的儒略日(1-365/366);A/D分别代表升轨(A)和降轨(D);subset表示中国地区的亮温数据;cc代表频率(6.6GHz,10.69GHz,18.0GHz,21.0GHz,37.0GHz);H/V分别代表水平极化(H)和垂直极化(V)。 2、坐标系及投影: 投影方式为等积割圆柱投影,双标准纬线为南北纬30度。有关EASE-GRID的相关详细信息,请参考http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/。 如果需要将EASE-Grid投影方式转换成Geographic投影方式,请参照ease2geo.prj文件,内容如下: Input projection cylindrical units meters parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd parameters end 3、数据格式: 以整数形二进制存储,每个数据占2个字节。本数据集中实际存储的数据为亮温*10,读出数据后需除以10得到真实亮温。 空间分辨率:25km; 时间分辨率:逐日,从1978年至1987年。 4、空间范围: 经度:60.1°-140.0°东经; 纬度:14.9°-55.0°北纬。 5、数据读取 每一组数据的遥感影像数据文件可以在ENVI和ERDAS软件中打开。

中国地区被动微波SSM/I和SSMIS亮度温度数据集(1987-2015)

本数据集主要包括美国国防气象卫星计划卫星(DMSP-F08、DMSP-F11、DMSP-F13和DMSP-F17)搭载的星载微波辐射计SSM/I和SSMIS的每日两次(升轨&降轨)亮度温度(K),时间覆盖范围为1987年9月15日至2015年12月31日。DMSP-F08、DMSP-F11和DMSP-F13的SSM/I亮温包含19.35H、19.35V、22.24V、37.05H、37.05V、85.50H和85.50V共七个通道;而DMSP-F17的SSMIS亮温观测由19.35H、19.35V、22.24V、37.05H、37.05V、91.66H和91.66V共七个通道组成。其中,DMSP-F08卫星亮温的覆盖时间为1987年9月15日至1991年12月31日;DMSP-F11卫星亮温的覆盖时间为1992年1月1日至1995年12月31日;DMSP-F13卫星亮温的覆盖时间为1996年1月1日至2009年4月29日;DMSP-F17卫星亮温的覆盖时间为2009年1月1日至2015年12月31日。 1、文件格式和命名: 亮度温度以年为单位分别存放,每个目录中均由各频率的遥感数据文件构成,其中SSMIS数据中还包含.TIM时间信息文件。 各数据文件名及其命名规则如下: EASE-Fnn-ML/HyyyydddA/D.subset.ccH/V(遥感数据) EASE-Fnn-ML/HyyyydddA/D.subset.TIM(时间信息文件) 其中:EASE代表EASE-Grid投影方式;Fnn代表卫星编号(F08、F11、F13、F17);ML/H分别代表多通道低分辨率和多通道高分辨率;yyyy代表年份;ddd代表该年的儒略日(1-365/366);A/D分别代表升轨(A)和降轨(D);subset 表示中国地区的亮温数据;cc代表频率(19.35GHz、22.24 GHz、37.05GHz、85.50GHz、91.66GHz);H/V分别代表水平极化(H)和垂直极化(V)。 2、坐标系及投影: 本数据集投影方式为EASE-Grid,即等积割圆柱投影,双标准纬线为南北纬30°。有关EASE-GRID的相关详细信息,请参考http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/。 如果需要将EASE-Grid投影方式转换成Geographic投影方式,请参照ease2geo.prj文件,内容如下: Input projection cylindrical units meters parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd parameters end 3、数据格式: 以整数型二进制存储,行列号:308*166,每个数据占2个字节。本数据集中实际存储的数据为亮温*10,读出数据后需除以10得到真实亮温。 4、数据分辨率: 空间分辨率:25.067525km,12.5km(SSM/I 85GHz,SSMIS 91GHz) 时间分辨率:逐日,从1978年至2015年。 5、空间范围: 经度:60.1°-140.0°东经; 纬度:14.9°-55.0°北纬。 6、数据读取: 每一组数据中的遥感影像数据文件可以在ArcMap、ENVI和ERDAS软件中打开。

黑河流域上游野外土壤测量分析数据(2013-2014)

数据集为2013-2014年黑河流域上游野外土壤测量分析数据,包括:土壤颗粒分析、水分特征曲线、饱和导水率、土壤孔隙度、入渗分析、土壤容重 一、土壤颗粒分析 1.土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 2.粒度数据用激光粒度仪进行测量。导致颗粒较大的样点无法测量,比如D23,D25无法测量而没有数据。加上部分样品缺失。 二、土壤水分特征曲线 1.采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。 2.环刀是按照数字从1开始一直往后编号,由于分3组同时在不同地方取样,因此为了避免重复编号,1组从1号开始编号,2组从500号开始往后编号,3组从1000号开始往后编号。和采样点的编号是一致的。在两个Excel中能找到对应编号。 3.土壤容重数据在2013年因为是补充2012年取样,因此并不是每个点位都有数据。同时部分样点土层未达到70 cm厚,因此无法取5层数据,同时由于运输及记录问题导致有很大部分数据存在缺失。同时随机点只选取了一层数据。 4.烘干后重量:部分样品由于实验过程中烘箱出问题,导致未测量烘干重。 三、土壤饱和导水率 1.测量方法说明:此方法是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。详细测量记录表格参见饱和导水率测量说明。K10℃是转化为10℃后的饱和导水率数据。单位:cm/min. 2.数据缺失说明:饱和导水率数据部分由于土样缺失以及土层深度不够无法取第4或5层数据导致数据缺失 3.取样时间:2014年7月 四、土壤孔隙度 1.采用容重法推求:根据土壤容重与土壤孔隙度的关系得到。 2.数据在2014年因为是补充2012年取样,因此并不是每个点位都有数据。同时部分样点土层未达到70 cm厚,因此无法取5层数据,同时由于运输及记录问题导致有很大部分数据存在缺失。同时随机点只选取了一层数据。 五、土壤入渗分析 1.入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量。得到一定负压下的近似饱和导水率。仪器情况详细情况见网站:http://www.decagon.com/products/hydrology/hydraulic-conductivity/mini-disk-portable-tension-infiltrometer/ 2.D7当时因为下雨而未测量入渗实验。 六、土壤容重 1.2014年土壤容重为在2012年基础上进行补样用环刀取原状土。 2.该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米)。 3.单位:g/cm3

黑河生态水文遥感试验:黑河流域1km/5天合成植被指数(NDVI/EVI)数据集(2011-2014)

黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2011-2014年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。在黑河中游农田、森林区域的验证结果表明,联合多时相、多角度观测数据的NDVI/EVI合成结果与地面实测数据具有较好的一致性(RMSE=0.105)。与MODIS MOD13A2产品的时间序列对比分析,充分显示了时间分辨率从16天提高到5天时,稳定的高精度的植被指数对植被生长细节的细致描述。总之,黑河流域1km/5day合成植被指数(NDVI/EVI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。