本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
2021-06-13
数据包含珠西沟冰川径流的钾、钠、钙、镁、氟离子、氯离子、硫酸根和硝酸根等指标,涵盖了大部分无机溶解组分。上述阴阳离子分别采用离子色谱和电感耦合等离子光谱仪等仪器测得,检测限低于0.01mg/L,误差低于10%;本数据可以用于反映珠西沟流域硫化物氧化、碳酸盐岩溶解和硅酸盐岩风化等化学风化过程对河水溶质的贡献,进而精准计算碳酸盐岩风化速率和硅酸盐岩风化速率,最终为评估冰川作用对岩石化学风化及其碳汇效应的影响提供科学依据。
2021-06-04
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
2021-06-04
冰川表面微气象是观测冰川表面一定高度处风向风速、气温、湿度、气压、四分量辐射、冰温及降水等气象要素。冰川表面微气象监测是进行冰川监测的重要内容之一,是开展冰川表面能量-物质平衡、冰川运动、冰川融水径流、冰芯等研究及相关模型模拟研究的重要基础数据,为探究气候变化与冰川变化之间的相互关系奠定基础。主要通过在冰川表面架设高山气象站进行自动监测,也可使用便携式气象站进行短期的流动监测。近年来,在天山、西昆仑、祁连山、羌塘内陆、唐古拉山、念青唐古拉、藏东南、横断山和喜马拉雅山地区20多条冰川表面开展了相关的气象监测研究。该数据集为冰川区及冰川末端月值气象数据。
2021-06-04
高分辨率冰芯孢粉记录能够指示季节性植被变化与气候指标的关系。本数据集对青藏高原作求普冰芯长32m的冰芯沉积物开展了高分辨率孢粉分析,获得了117个冰芯孢粉组合数据,所有数据为孢粉百分比数据,按照深度顺序排列。
2021-05-25
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
2021-05-20
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
2021-03-30
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
2020-11-05
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
2020-07-28
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月格陵兰岛冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE Follow-On(GRACE-FO,2018年6月至今)。此外为了填补GRACE和GRACE-FO之间的数据中断,我们额外采用了由欧洲空间局Swarm三星星座的GNSS轨道摄动数据反演得到的重力场数据。数据格式为Matlab数据文件,冰盖质量变化转化为等效水高,表达在0.25°x0.25°格网上,时间分辨率为1个月。本数据集可用于近二十年格陵兰岛冰盖质量变化特征及其与全球气候变化之间关系的研究。
2020-05-26
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件