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Abstract

Climatic change is exhibiting significant effects on the ecosystem of the Tibetan Plateau (TP), a climate-sensitive area. In
particularly, winter frost, freezing events and snow avalanche frequently causing severe effects on ecosystem and social
economy, however, few long-term winter temperature records or reconstructions hinder a better understanding on variations
in winter temperature in the vast area of the TP. In this paper, we present a minimum winter (November—February) tempera-
ture reconstruction for the past 668 years based on a tree-ring network (12 new tree-ring chronologies) on the southeastern
TP. The reconstruction exhibits decadal to inter-decadal temperature variability, with cold periods occurring in 1423-1508,
1592-1651, 1729-1768, 1798-1847, 1892-1927, and 1958-1981, and warm periods in 1340-1422, 1509-1570, 16521728,
1769-1797, 1848—-1891, 1928-1957, and 1982-2007. As suggested by the comparisons with existing winter temperature
series and spatial correlations with Climatic Research Unit gridded data, our reconstruction is reliable and indicative, and
it can represent large-scale winter temperature variability on the southeastern TP. Furthermore, it shows an overall agree-
ment with winter temperature from the northeastern TP on decadal to inter-decadal timescales. It also shows the possible
effects of volcanic eruption and reducing solar activity on the winter temperature variability for the past six centuries on
the southeastern TP.
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temperature cycle (Duan et al. 2017). Those valuable sum-
mer and annual temperature records not only deepen our
knowledge on past climate variability, but also enhance
our understanding on climate-linked glacier fluctuations
and connected substantial changes in the cryosphere (Asad
et al. 2017; Brauning 2006; Hochreuther et al. 2015; Liang
et al. 2009; Xu et al. 2012; Zhu et al. 2013, 2019), treeline
dynamics (Liang et al. 2016; Sigdel et al. 2018), shrub
recruitment (Lu et al. 2019; Wang et al. 2015), volcanic
eruptions (Li et al. 2017; Liang et al. 2008; Wang et al.
2016), and historic population dynamics (Liu et al. 2009).
Unfortunately, only few winter temperature reconstruc-
tions for the TP are available (Duan et al. 2017; Gou et al.
2007; Shi et al. 2017; Zhang et al. 2015c; Zhu et al. 2008).
In addition, although the whole TP has experienced a uni-
form warming during the past century, especially since the
1960s (Kuang and Jiao 2016; Liu and Chen 2000), ice-core
oxygen isotopic records showed that temperature varia-
tions of the southern part of the TP were different from
these from the northern part before 20th century (Thomp-
son et al. 2018). Such inconsistencies have also been iden-
tified by tree-ring width reconstructed drought variabil-
ity on the TP (Zhang et al. 2015b). However, we know
little about whether the winter temperature variability is

Fig.1 Location of the 12 sampling sites used in this study on the
southeastern TP (red triangles), nearby cities (Lhasa, Nyingchi,
Qamdo, olive drab circles) and the selected regional CRU box (white
rectangle). The T, ;, (p11-c2) in the CRU box is used for final recon-

min
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inconsistent or consistent on the southern/northern parts
of the TP on a long-term context.

The objective of this study is to develop a winter tem-
perature (November—February) reconstruction based on a
network of 12 tree-ring width chronologies. The 668-year
winter temperature of this study can provide more infor-
mation on long-term climate variability in the southeastern
TP and the spatial variability on the northern and southern
parts of TP over the past six centuries. Additionally, we also
investigated the possible influence of external forcing fac-
tors (e.g., volcanic eruption and solar activity) on our winter
temperature variabilities.

2 Materials and methods
2.1 Study area

Our study area is located on the southeastern TP (Fig. 1).
This region is under the seasonally alternative influence of
the Indian Summer Monsoon in the summer and the mid-
latitude Westerlies in the winter. It is characterized by a
clear transition between a humid season with monsoonal
rainfall during summer (June—August) and a relatively dry

struction. The red rectangle in the inset map shows the location of
our study area in the world. The background map is from http://maps.
google.com/
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winter season (November—February) (Fig. 1). As shown by
an analysis of Climatic Research Unit (CRU) TS 4.01 data
during the period 1960-2007 for the grid box 94.5-97.5°E
29.5-31.5°N, that covers most of our sampling sites (Figs. 1,
2), annual precipitation is around 550 mm, with 62% of
it falling during June to August (Harris et al. 2014). The
annual mean temperature is about —0.41 °C, with the warm-
est and coldest months being July (7.94 °C) and January
(—9.46 °C), respectively. Tibetan juniper (Sabina tibetica)
and Balfour spruce (Picea likiangensis var. balfouriana) are
two dominant tree species in this region. Generally, juniper
grows on the south-facing slope, and it can reach an upper
distribution limit up to 43004600 m a.s.l.. Balfour spruce
grows on north-facing slopes reaching up to ~4200—4400 m
a.s.l. (Zhu et al. 2011a).

2.2 Tree-ring sites and tree-ring width (TRW)
chronologies

Tree-ring samples were taken from juniper and spruce
from 12 sites on the southeastern TP at elevations rang-
ing from 4176 to 4653 m a.s.l. (red triangle in the Fig. 1;
Table S1) during several field campaigns from 2007 to
2016. More than 20 trees were selected near the upper
treelines with open canopy at each site. At least two cores
from each tree were extracted using an increment borer
with an inner diameter of 5.15 mm. Annual ring width
was measured using a Lintab system with a resolution a
0.01 mm, and cross-dated with the assistance of the TSAP-
win software. The COFECHA software was utilized to
check the results of cross-dating (Holmes 1983). Nega-
tive exponential curve or linear regression with a negative

slope was applied to remove the age-related trend for each
series using the ARSTAN program (Cook 1985). The bi-
weight robust mean was employed for all the detrended
series to produce standard chronologies on a site-by-site
basis (Fig. S1 and Fig. S2). The reliability and signal
strength of each standard chronology is assessed by a
50-year moving Expressed Population Signal (EPS) with
a 25-year overlap and the mean series inter-correlations
(Rbar) (Fritts 1976).

2.3 Investigation of climate signals in TRW
chronologies

To investigate the tree growth-climate relationships, Pear-
son correlation analyses were performed between each
tree-ring chronology and its nearest CRU TS 4.01 gridded
point data during 1960-2007. The period 1960-2007 is
selected because more meteorological stations are avail-
able around our study area since 1960s, thus providing
relatively reliable CRU data (Fig. S3). The monthly cli-
mate variables include total precipitation, mean tempera-
ture, maximum temperature, and minimum temperature
from previous September to current October. Besides
these monthly variables, a few seasonal averaged temper-
ature and summed precipitation variables with combined
months were also correlated with the chronologies. For
a straightforward presentation of so many correlations
between 12 individual chronologies and various climate
variables, we summarized them by counting numbers of
significant (p < 0.05) positive/negative correlations and
calculating their averages, respectively.

Fig.2 The monthly CRU TS
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2.4 Climate reconstruction method and calibration/
verification statistics

According to the common climate signals identified by
above mentioned methods, we selected a seasonal climate
variable as the target for the final reconstruction. The climate
variable is a regional average of CRU dataset in the spatial
range of 94.5-97.5°E 29.5-31.5°N (Fig. 1, covering most
of our sampling sites). To transfer the TRW chronologies to
the climate target, multivariable stepwise regression analysis
was performed. We firstly screened the site chronologies
which had significant correlations with the reconstruction
target. As there are collinearities among these selected chro-
nologies, we did principal component analysis (PCA) on
them during their common period of EPS > 0.85 to extract
the PCs (principal components) which are orthogonal to
each other. Then the PCs with eigenvalues > 1 were defined
as the candidate predictors in the stepwise regression analy-
sis and targeted climate variable as the predictant. As the
screened chronologies (for example, n chronologies) had
different lengths with EPS > 0.85, the PCA and subsequent
regression analysis were performed n— 1 times as the chro-
nologies became less and less with time further backward till
to only two chronologies. Thus, totally n— 1 nested recon-
structions were got after n— 1 times of regression analysis.
With this iterative process, the climate target was finally
extended back to 1340 CE based on as more as possible
chronologies during each nested period.

Calibration and verification tests were conducted to
evaluate the transfer function between reconstructed and
observed temperature for each nested reconstruction.
The full period 1960-2007 was split into 1960-1982 and
1983-2007, respectively as the calibration and verifica-
tion periods. Then the calibration/verification periods were
changed to 1984-2007 and 1960-1983, respectively for
independent sub-period tests. In addition, the “leave-one-out
cross-validation method” (LOOCYV, Michaelsen 1987) and
bootstrapping (Guiot 1991) were also performed to check
the temporal stability and reliability of our models for each
nested reconstruction during 1960-2007. We produced 1000
bootstrapped subsamples to calculate the models’ explained
variance and adjusted explained variance for each nested
reconstruction. The number of each subsample was the same
as the initial dataset. The statistics used here to evaluate
the predictive skills of the transfer functions included the
Reduction of Error (RE), Coefficient of Efficiency (CE), and
explained variance. For the LOOCYV technique, sign tests
for both first-differenced data and raw data, RE, and the
explained variance were computed to assess the consistency
between the observed and reconstructed data (Fritts 1976).
The RE offers a rigorous test of linkage between observed
and reconstructed data, and any positive value is indicative
of the good skill of the model (Fritts 1976).

@ Springer

Other statistical analyses were also performed to verify
the final reconstruction, to investigate its spatial representa-
tiveness and periodicities. To test whether only juniper and/
or spruce can provide compatible information with each
other, we did reconstructions with only TRW chronologies
of juniper or spruce during 1715-2007. The reconstruction
methods were same as the above procedures. We also did
spatial correlation analysis between reconstructed climate
series and CRU TS 4.01 dataset to investigate the spatial
representativeness of our reconstruction during the instru-
mental period (1960-2007) for each nested reconstruction.
In addition, the reconstruction was compared with previ-
ously published climate reconstructions in the nearby area
of the southeastern TP (Shi et al. 2017; Zhang et al. 2015¢)
for a validation before instrumental periods. Furthermore,
the final reconstructions were compared with temperature
record from the northeastern TP (Zhu et al. 2008, 400-year
high-pass filtered) to investigate whether the winter tem-
perature variabilities were consistent on the northeastern
and southeastern TP during the past six centuries. The fre-
quency features of the final reconstruction were investigated
using red noise spectra (Bunn 2008) and wavelet transform
(Gouhier et al. 2018). What’s more, the final reconstructions
were further compared to the solar activity (Delaygue and
Bard 2011) to explore its possible effect on our winter tem-
peratures. All data analyses and plots were calculated and
made using R version 3.5.1 (R Core Team 2018).

3 Results

3.1 Tree growth-climate relationships and targeted
climates

Winter minimum temperatures seemed to be the dominant
factor influencing the tree growth in our study area. Over-
all, the 12 tree-ring width chronologies exhibited much
stronger correlations with temperatures than with precipita-
tion amount (summary of the correlations: Fig. 3; correla-
tions of individual chronology for raw data: Fig. S4; cor-
relations of individual chronology for first-differenced data:
Fig. S5). Both numbers and averages of positive significant
correlations with temperatures were greater than these of
the negative significant correlations (Fig. 3). The averages
of significant correlations (p <0.05) with T, ;, were higher
than these with T, ,, and T, (Fig. 3c). The highest average
correlation was found with T ;, (p11-c3) (Fig. 3c, r=0.46,
p <0.05), which exhibited significant correlations with seven
site chronologies. However, nine tree-ring width chronolo-
gies were found to correlate significantly with T,;, (p11-c2),
and average of significant correlations with T _;, (p11-c2)
was 0.43, close to the highest correlation (0.46). These sig-
nificant correlations also held true for the first-differenced
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Fig.3 Summary for the significant correlations of the 12 tree-ring
width chronologies with their corresponding nearest CRU TS 4.01
gridded variables (raw data). The number and average value of the
significant correlations are given for all chronologies during 1960-
2007. Numbers represent months and seasons of the current ‘c’ and

data (Fig. S5). Taken together, T, ;, (p11-c2) was considered
as the targeted climate variable for final reconstruction using
the nine selected tree-ring width chronologies.

3.2 Calibration/verification statistics
and reconstructed temperatures

We got eight nested reconstructions (Fig. 4a), and all
of them passed the calibration and validation test. The
explained variance during 1960-2007 for the nested
reconstructions ranged from 35.57 to 53.74% (Fig. 4a,
Table S2). The RE values of each nested reconstruction
during two split-up calibration and verification periods
(calibration period: 1983-2007, verification period:
1960-1982; calibration period: 1960-1983, verifica-
tion period: 1984-2007) were always positive (Fig. 4b),
with their corresponding explained variances being pre-
sent in Table S3. Both LOOCV method and bootstrap
analysis yielded the almost similar explained variances
for each nested reconstruction (Table S4 and Table S5).
Additionally, the LOOCYV also produced the positive RE
(0.3-0.49) for all nested periods. The sign tests of the
raw data were significant at p < 0.01 level, and these
of the first-differenced data were not significant for all
the nested reconstructions (p > 0.05, Table S4). These
lower sign tests of the first differenced data than raw
data demonstrated our reconstruction performed better
in the low-frequency domains than the high-frequency

previous ‘p’ years. Only 95% significant correlations were displayed
with color. a, ¢ Positive correlations; b, d negative correlations; a, b
number of the significant correlations; b, d average for the significant
correlations

domains. Moreover, for all the nested periods, the recon-
structed T, ;, (p11-c2) closely matched the observed T
(p11-c2) both for the raw dataset and linearly detrended
datasets (Fig. 5 and Fig. S6).

Our reconstructed winter temperature proved spatially
representative for each nested subset (Fig. 6 and Fig.
S7). The reconstruction revealed significant correlations
(p<0.05) with T_;, (p11-c2) across the south-central, and
southeastern TP (1960-2007, Fig. 6a). It captured broader-
scale temperature variability. The high spatial correlations
mainly occurred on the southeastern TP, including Nyingchi
and Qamdo of China, Bhutan, Nepal, and Myanmar. Addi-
tionally, the representativeness of our reconstructed series
also held true in the high-frequency domain for the south-
central, and southeastern TP (first-differenced data, Fig. 6b).
Taken together, our TRW based winter temperature recon-
struction represented the T ;, (p11-c2) variability on the
southeastern TP quite well.

The final reconstruction of our winter minimum tem-
perature went back from 1340 CE to 2007 CE. The final
reconstruction and eight nested reconstructions showed
good coherency with one another (Fig. 4a). PCs used for
each nested subset, contributions of each nest reconstruc-
tion to the final series were shown in Table S2. The finally
reconstructed winter temperature exhibited decadal to inter-
decal variations during 1340-2007. As showed by a 51-year
low-pass filtered curve (Fig. 8b), cold periods covering a
multi-decadal scale occurred in 1423-1508, 1592—-1651,

min

min
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Fig.4 a The final winter |
temperature reconstruction for (a)
the period 1340-2007 (black
solid line) from different nested
reconstructions (colorful dotted
lines). The explained variance
for each nest reconstruction
during 1960-2007 is added

to the legend. b Reduction of
error (RE, blue), coefficient of
efficiency (CE, purple), and

the sample depth (number of
chronologies for each year, grey
shading). The solid lines (blue
and purple) are for the RE and

CE with the verification period T s 0 sy
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Fig.5 Comparison of the observed and reconstructed T, ;, (p11—2) during 1960-2007 for the nested reconstruction 1 (1715-2007). a Raw data;
b linearly detrended data. Comparisons for other nested subsets are provided in the supplementary

1729-1768, 1798-1847, 1892-1927, and 1958-1981. Additionally, tree-ring width chronologies from mixed
Warm periods were in 1340-1422, 1509-1570, 1652-1728,  species within this study would result in compatible climate
1769-1797, 1848-1891, 1928-1957, and 1982-2007. information. As shown in Fig. S8, the three reconstruction
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Fig.6 Spatial correlations between our reconstruction (for the nested
reconstruction 1, 1715-2007) and observed T, ;, (p11-c2) from CRU
TS 4.01 during the period 1960-2007. a Raw data; b first-differenced
data. Only correlations at 95% significant level are shown. Black solid
circles indicate the locations of the 12 tree-ring sampling sites. Black
triangle denotes the locations of the winter temperature reconstruc-
tion site on the northeastern TP (Zhu et al. 2008). Spatial correlations
for other nested subsets are provided in the supplementary

chronologies (based on only juniper, only spruce, both spe-
cies) exhibited good agreement during 1715-2007, imply-
ing climate reconstructions based on mixed species would
provide compatible climate reconstructions.

4 Discussion

4.1 Winter temperature signals encoded in our
tree-ring widths

Winter temperatures [T, (p11-¢3)/T,;, (p11-c2)] appear
to be a primary factor controlling tree growth at our sam-
pling sites (Fig. 3). This is consistent with other studies from
the southeastern TP (Brauning 2006; Duan et al. 2017; Shi
et al. 2017; Zhang et al. 2015c), and the northeastern TP
(Gou et al. 2007; Zhang et al. 2015a; Zhu et al. 2008). Such
winter temperature signals in TRW are also recorded in
other areas of China, such as from central China (Cai et al.
2016; Zheng et al. 2016), southeastern China (Chen et al.
2012; Duan et al. 2012; Cai and Liu 2017; Shi et al. 2010),

southwestern China (Fang et al. 2018), and northeastern
China (Zhu et al. 2009). Such result also holds true for the
southern Sikhote-Alin mountain range of northeastern Asia
(Ukhvatkina et al. 2018), northern Iran (Bayramzadeh et al.
2018), southern Poland (Opata and Mendecki 2014), and the
northeastern part of the USA (Pederson et al. 2004).

To date, there are several explanations on the possible
effects of low winter temperature on subsequent tree growth.
For example, colder winter can trigger bud damage, frost
desiccation and reduced root activity (Korner 2012), and
hence limit tree growth in the next growing season. Lower
winter temperatures also lead to thicker frozen soil layers
and delay of the snowmelt and spring onset date, nega-
tively affecting tree growth (Gou et al. 2007). As a contrast,
warmer winter can trigger earlier snowmelt that allows the
soil layers to drain and warm quicker, and initiation of cam-
bial activity would thus advance (Fu et al. 2012; Hollesen
et al. 2015; Williams et al. 2015). These would extend the
growing season length and benefit tree growth.

4.2 Validation of the reconstruction

The reliability of our winter temperature reconstruction
is further confirmed by comparisons with previous winter
temperature series on the southeastern TP (Shi et al. 2017;
Zhang et al. 2015c, Fig. 7, Table S6). The correlations of
our reconstruction with Shi et al. (2017) and Zhang et al.
(2015c) for their raw data during their common periods
were 0.28 (p <0.01), 0.62 (p <0.01), respectively (31-year
high-pass filtered data: 0.28, 0.71; 31-year low-pass filtered
data: 0.27, 0.45, Table S6, 1718-2006). Our winter tem-
perature record showed an overall consistency with Shi et al.
(2017) on the 40- to 70-year time scale, as detected by the
wavelet coherence analysis (Fig. S9a). On annual to 32-year
time scale, our series was consistent with the Zhang et al.
(2015c¢) (Fig. S9b). Much higher consistency between our
reconstruction and Zhang et al. (2015c¢) probably resulted
from the fact that both reconstructions were derived from
the same area (Qamdo), and the tree-ring width chronolo-
gies employed for final reconstructions likely shared much
more common signals. The lower correlation of our chronol-
ogy with Shi et al. (2017) was likely due to longer distance
between these two sites (Qamdo, Shangri-La). Notably, less
low-frequency (inter-decade) signals were retained by Zhang
et al. (2015c¢) than ours, which may be attributed to the dif-
ferences of age-related detrending methods. Limited inter-
decade variations were retained by cubic spline detrending
in Zhang et al. (2015c¢). These results imply more common
signals of low-frequency (on inter-decadal domains) signals
among these winter temperature records than those of high-
frequency (on annual to decadal) signals.

In addition, comparisons with other temperature records
further validated our reconstruction. Cold periods of
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1592-1656 and 1730-1769 in our reconstruction also were
prevailed in the annual temperature from the southeastern
TP (Wang et al. 2014). Moreover, our winter temperature
chronology showed a warming trend since 1960s in south-
eastern TP. Such a winter warming trend was also postulated
for northeastern China (Zhu et al. 2009), northeastern TP
(Zhu et al. 2008), southeastern TP (Shi et al. 2017), and
central China (Cai et al. 2016).

4.3 Comparison with winter temperature
from the northeastern TP

Our winter temperature record of the southeastern TP is
consistent with winter temperature reconstruction of Wulan
from the northeast TP (Zhu et al. 2008) on decadal to multi-
decadal scale. Both series show high similarities (Fig. 8a,
b, 400-year high-pass filtered, r=0.24, p <0.01). Com-
mon cold intervals were found in 1448—-1508, 1600-1651,
1798-1839, 1892-1927, and 1958-1981, and common
warm periods were detected in 1340-1352, 1396-1422,
1523-1570, 1671-1728, 1848-1882, and 1986-2004. In
addition, as shown by the spatial correlations of our recon-
structions with CRU temperature (Fig. 6 and Fig. S7), Wulan
is in the domain of significant correlations only for the raw
data. This implies the signals of our winter reconstruction
and Wulan winter temperature share little similarity on the
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high-frequency domains (annual to inter-annual), and the
consistency on the low-frequency domains (inter-decadal
to multidecadal). The running correlations between two
records with different running lengths produce the similar
results (Fig. S10). These imply that common variations of
winter temperature between the northeastern TP and the
southeastern TP exist on decadal to multidecadal scale dur-
ing the past six centuries.

Such coherency of winter temperature variability on
decadal to multidecadal scale between the northeastern TP
and the southeastern TP is same to the patterns identified in
climate observations (Kuang and Jiao 2016; Liu and Chen
2000). However, it is different to the complicated spatial
variability identified in ice-core oxygen isotopes (Thompson
et al. 2018). One possible explanation is the dating uncer-
tainties in ice cores. Another is that that ice-core oxygen
isotope may showed complexity of centennial variabilities,
which is longer than the decadal to multidecadal signals in
this study.

4.4 Possible linkage of cold winters with external
forcing

An abnormally cold interval is apparent in our reconstruc-
tion during 1810s—1820s, with a~2-standard deviation in
1817 (Fig. 8b). This may be triggered by the cooling effect
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of the Tambora eruption in Indonesia in April, 1815. As the
largest explosive eruption during the past 500 years (vol-
canic explosivity index, VEI =7), the Tambora eruption led
to a massive release of sulphur to the stratosphere, cooling
the land surface by reflecting sunlight, and greatly influenc-
ing the climate in China, Europe, and America (Luterbacher
and Pfister 2015; Gao et al. 2017). Similar cold intervals
during 1810s—1820s have also been widely detected by
reconstructed summer temperature chronologies from south-
central TP (Liang et al. 2008), southeastern TP (Fan et al.
2010), Nepal (Cook et al. 2003), Bhutan (Krusic et al. 2015),
East Asia (Cook et al. 2013), northern Sikkim (Borgaonkar
et al. 2018), and Northern Hemisphere extra-tropics (Esper
et al. 2002).

In addition, the variability of our winter temperature chro-
nology may also be related to the solar activity. As revealed
from the multi-taper spectrum and wavelet transform, our
winter temperature chronology exhibited significant wave-
lengths of 137, 32, and 2—4 years (Fig. 9). The first two
frequencies are closely linked to the solar activity (Kurths
et al. 1993; Raspopov et al. 2004). The cold periods dur-
ing 1460-1508, and 1800-1820 of our series correspond to
weaker solar activity during the Sporer Minimum and the
Dalton Minimum, respectively (Fig. 8b), further supporting
the possible influence of solar activity on the winter tem-
perature variability of the southeastern TP. However, this
relationship failed during the Maunder Minimum around

1400

1500 1600 1700 1800 1900 2000

late seventeenth century and early eighteenth century. This
may be due to mediation of internal variabilities from Atlan-
tic Multidecadal Oscillation (AMO) (Wang et al. 2014; Shi
et al. 2017), which is in a warm phase during Maunder
Minimum (Gray et al. 2004). As most records in this area
are around or less than 700 years, development of longer
temperature reconstructions is necessary to validate this
137-year periodicity.

4.5 Comparisons with temperatures from China,
Northern Hemisphere and Globe

Our winter temperature record shows similarity with the
large-scale temperature reconstructions from China (Shi
et al. 2012), Northern Hemisphere (Wilson et al. 2016)
and Globe (Mann and Jones 2003, the 10-year spline data:
Fig. 10; the 31-year spline data: Fig. S11). All records exhib-
ited an overall warming trend since the beginning of twen-
tieth century. Common cold periods among these records
were found during 1610s, 1820s, and common warm inter-
vals occurred during 1940s. However, discrepancies existed
during 1670-1720 and before 1500. Such discrepancies
may be partially due to their differing seasonality (winter/
summer/annual) and methodology (detrending/reconstruc-
tion). Decreased number of available proxies before 1900s
may also explain their discrepancies. More efforts (uniform
seasonality and methodology, as many as possible proxies
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Fig.9 a Multi-taper spectrum of our reconstructed winter tempera-
ture, with 95% and 99% confidence level (CI confidence intervals)
inferred from red noise spectra, and significant periods at 95% level
are marked; b wavelet transform of our reconstructed winter tem-
perature, with significant periods (p <0.05) highlighted by solid black
lines

before 1900s) are required to explore what caused these
discrepancies.

5 Conclusions

Based on a network of 12 tree-ring width chronologies on
the southeastern TP, we extended the winter (p11-c2) tem-
perature record of the southeastern TP back to 1340 CE.
This is by far the longest existing winter temperature recon-
struction for the southeastern TP, which captures decadal
to multidecadal temperature variability. Our time-series
shows substantial consistency with other winter temperature
reconstructions from the northeastern TP on both decadal
and multidecadal scales. Additionally, our series captures
a cooling effect caused by the 1815 Tambora eruption. The
cold periods 1460-1508, and 1800-1820 are in good agree-
ment with the weaker solar activity of Sporer Minimum and
Dalton Minimum, respectively, implying the possible effect
of reduced solar activity on our winter temperature. Con-
sidering the relative weakness of the reconstruction in high-
frequency variability and less spatial coincidence, further
efforts should be paid to establish more winter temperature-
dominated tree-ring series to capture inter-annual signals,
which will provide a more comprehensive picture of climatic
history on the southeastern TP.
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