The Third pole

Brief Introduction:The Qinghai-Tibet Plateau, known as the 'three poles' on the earth, has been an important area for the study of global environmental change and has played a profound role in regulating the ecology, environment and climate of the entire planet. It has always been a hot spot of concern to the international community. Under the background of global warming, the elements of the cryosphere such as the three-pole glaciers, frozen soils, and frozen-melt lakes have undergone significant changes. The glaciers are rapidly retreating and the layers of frozen soils are thickened. For a long time, China has carried out systematic and multidisciplinary research on the third pole of the world, which is dominated by the Qinghai-Tibet Plateau, and has formed a rich research accumulation. Compared with the Qinghai-Tibet Plateau, China's current level of scientific research in the Arctic and Arctic regions is relatively low, especially the problems of weak research foundation, scattered research direction, and no system and low level. With the impact of climate warming...

Publish Datetime:2020-06-23

Number of Datasets:177

  • Long-term series of daily snow depth in Euroasia (1980-2016)

    The “long-term series of daily snow depth in Eurasia” was produced using the passive microwave remote sensing data. The temporal range is 1980~2016, and the coverage is the Eurasia continent. The spatial resolutions is 0.25° and the temporal resolution is daily. A dynamic brightness temperature gradient algorithm was used to derive snow depth. In this algorithm, the spatial and temporal variations of snow characteristics were considered and the spatial and seasonal dynamic relationships between the temperature difference between 18 GHz and 36 GHz and the measured snow depth were established. The long-term sequence of satellite-borne passive microwave brightness temperature data used to derive snow depth came from three sensors (SMMR, SSM/I and SSMI/S), and there is a certain system inconsistency among them. So, the inter-sensor calibration was performed to improve the temporal consistency of these brightness temperature data before snow depth derivation. The accuracy analysis shows that the relative deviation of Eurasia snow depth data is within 30%. The data are stored as a txt file every day, each file includes a file header (projection mode) and a 720*332 snow depth matrix, and each snow depth represents a 0.25°*0.25° grid. For details of the data, please refer to data specification “Snow depth dataset of Eurasian (Version 1.0) (1980-2016).doc”

    2020-03-13 0 View Details

  • The 30-minute flux data in three pole region (2000-2016)

    The dataset is a 30-minute eddy covariance flux observation data from nine flux stations in the Three Poles, including the data of ecosystem Net Carbon Exchange (NEE), Gross Primary Productivity(GPP), and Ecosystem Respiration (ER) . The time coverage of the data is from 2000 to 2016. The main steps of data pre-processing include outlier removal (±3σ), coordinate axis rotation(three-dimensional wind rotation), Webb-Pearman-Leuning correction, outlier elimination, carbon flux interpolation and decomposition. And missing data is interpolated by the nonlinear empirical formula between CO2 flux value(Fc) and environmental factors.

    2020-01-19 0 View Details

  • Elevation dataset of the Third pole (2013)

    Digital Elevation Model (DEM) is a kind of solid ground Model that represents the ground Elevation in the form of a set of ordered numerical arrays. The third pole region of40°1′52″N~23°11′59″N、105°43′45″E~61°28′45″E of the roof of the world ecological geographic area,These include the qinghai-tibet plateau, the hengduan mountains, the Himalayas, the Hindu kush mountains and the pamirs plateau.Classified according to:At 4000 m altitude as a benchmark, the fusion of slope, reference mountain integrity and ecological system integrity, the spatial resolution of 0.008 ° x 0.008 °

    2020-01-18 0 View Details

  • Data of aerosol types in the three polar region V1.0 (2006-2019)

    The three pole aerosol type data product is an aerosol type result obtained by integrating the data assimilation of Meera 2 and the active satellite CALIPSO product through a series of data preprocessing, quality control, statistical analysis and comparative analysis. The key of this algorithm is to judge the type of CALIPSO aerosol. In the process of aerosol type data fusion, according to the type and quality control of CALIPSO aerosol, and referring to the type of merra 2 aerosol, the final aerosol type data (12 kinds in total) and quality control results in the three pole area are obtained. The data product fully considers the vertical distribution and spatial distribution of aerosols, with high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).

    2020-01-18 0 View Details

  • Daily cloudless MODIS Snow area ratio data set of the QTP (2000-2015)

    The daily cloudless MODIS Snow area ratio data set (2000-2015) of the Qinghai Tibet Plateau is based on MODIS daily snow product - mod10a1, which is obtained by using a cloud removal algorithm based on cubic spline interpolation. The data set is projected by UTM with spatial resolution of 500m, providing daily snow cover FSC results in the Tibetan Plateau. The data set is a day-to-day document, from 24 February 2000 to 31 December 2015. Each file is the result of snow area proportion on that day, the value is 0-100%, which is envi standard file, the naming rule is: yyyddd_fsc_0.5km.img, where yyyy represents the year, DDD represents Julian day (001-365 / 366). Files can be opened and viewed directly with envi or ArcMap. The original MODIS Snow data product for cloud removal comes from the mod10a1 product processed by the National Snow and Ice Data Center (NSIDC). This data set is in the format of HDF and uses the sinusional projection. The attributes of the daily cloudless MODIS Snow area ratio data set (2000-2015) on the Qinghai Tibet Plateau consist of the spatial-temporal resolution, projection information and data format of the data set. Temporal and spatial resolution: the temporal resolution is day by day, the spatial resolution is 500m, the longitude range is 72.8 ° ~ 106.3 ° e, and the latitude is 25.0 ° ~ 40.9 ° n. Projection information: UTM projection. Data format: envi standard format. File naming rules: "yyyyddd" + ". Img", where yyyy stands for year, DDD stands for Julian day (001-365 / 366), and ". Img" is the file suffix added for easy viewing in ArcMap and other software. For example, 2000055 ﹐ FSC ﹐ 0.5km.img represents the result on the 55th day of 2000. The envi file of this data set is composed of header file and body content. The header file includes row number, column number, band number, file type, data type, data record format, projection information, etc.; take 2000055 ﹣ FSC ﹣ 0.5km.img file as an example, the header file information is as follows: ENVI Description = {envi file, created [sat APR 27 18:40:03 2013]} Samples = 5760 Lines = 3300 Bands = 1 Header offset = 0 File type = envi standard Data type = 1: represents byte type Interleave = BSQ: data record format is BSQ Sensor type = unknown Byte order = 0 Map Info = {UTM, 1.500, 1.500, - 711320.359, 4526650.881, 5.0000000000e + 002, 5.0000000000e + 002, 45, north, WGS-84, units = meters} Coordinate system string = {projcs ["UTM [u zone [45N], geocs [" GCS [WGS [1984], data ["d [WGS [1984", organization ID ["WGS [1984", 6378137.0298.257223563]], prime ["Greenwich", 0.0], unit ["degree", 0.01745532925199433]]] project ["transfer [Mercator"]] parameter ["false [easting", 500000.0], parameter ["false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [false [false [easting ", 500000.0], parameter], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter [false [easting", 500000.0], parameter [500000.0], parameter [500000.0], parameter [500000.0], parameter ["false_northing", 0.0], parameter ["central_meridian", 87.0], parameter ["scale" _Factor ", 0.9996], parameter [" latitude ﹣ of ﹣ origin ", 0.0], unit [" meter ", 1.0]]} Wavelength units = unknown, band names = {2000055}

    2020-01-16 0 View Details

  • Aerosol optical thickness  in the three polar region V1.0 (2000-2019)

    The "poles AOD Collection 1.0" aerosol optical thickness (AOD) data set adopts the self-developed visible band remote sensing inversion method, combined with the merra-2 model data and the official NASA product mod04. The data covers from 2000 to 2019, with the time resolution of day by day, covering the "three poles" (Antarctic, Arctic and Qinghai Tibet Plateau) area, and the spatial resolution of 0.1. Degree. The inversion method mainly uses the self-developed APRs algorithm to invert the aerosol optical thickness over ice and snow. The algorithm considers the BRDF characteristics of ice and snow surface, and is suitable for the inversion of aerosol optical thickness over ice and snow. The experimental results show that the relative deviation of the data is less than 35%, which can effectively improve the coverage and accuracy of the aerosol optical thickness in the polar region.

    2020-01-12 0 View Details

  • Ad perchloric acid data of Miaoergou ice core, Tianshan (1956-2004)

    This data was reconstructed based on the history of perchlorate from 1956 to 2004 in Miaoergou ice core (94°19 'E,43°03 'N, 4518 m) in east Tianshan mountain. Data content: perchlorate from 1956 to 2004 (including: Cl-, NO3- and SO42-). Data was measured by ESI-MS/MS; Data quality: the blank sample was significantly lower than the sample values, and the quality was good. Data application result and prospect: The data has been published, the detailed information can be found in the published paper. Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment. Time range and resolution: 1956-2004 AD, and annual resolution.

    2020-01-12 0 View Details

  • Frozen ground map of China based on a Map of the Glaciers, Frozen Ground and Deserts in China (1981-2006)

    These data are a digitization of the frozen soil distribution map of the Map of the Glaciers, Frozen Ground and Deserts in China (1:4,000,000). Considering the unification with the global frozen soil classification system, the permafrost is divided into the following five types: (1) Discontinuous permafrost: continuous coefficient 50%-90% (2) Island permafrost: continuous coefficient <50% (3) Plateau discontinuous permafrost: continuous coefficient 50%-90% (4) Plateau island permafrost: continuous coefficient 50%-90% (5) Mountain permafrost The compilation basis of the frozen soil map includes (1) the measured field survey data and exploration of frozen soil; (2) aerial image and satellite image interpretation; (3) TOPO30 1-km resolution ground elevation data; and (4) and temperature and ground temperature data. The distribution of frozen soil on the Tibetan Plateau adopted the research results of Zhuotong Nan et al. (2002). Using the average annual temperature data of 76 boreholes along the Qinghai-Tibet Highway, a statistical regression analysis was performed to obtain the relation between annual mean ground temperature, latitude and elevation. Based on the relation combined with GTOPO30 elevation data (global 1-km digital elevation model data developed by the Earth Resources Observation and Technology Center of the U.S Geological Survey), the annual average ground temperature distribution over the entire Tibetan Plateau was simulated. Taking the annual average ground temperature of 0.5 °C as the boundary between permafrost and seasonal frozen soil and the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Yafeng Shi, et al., 1988) as a reference, the boundary between the plateau discontinuous permafrost and plateau island permafrost was determined. In addition, taking the Distributions Map of Permafrost in Daxiao Hinganling Northeast China (Dongxin Guo, et al. 1981), the Distribution Map of Permafrost and Ground Ice in Circum-Arctic (Brown et al. 1997) and the latest field data as references, the permafrost boundary of northeast China has been revised; the mountain permafrost boundary in the northwest mostly adopted the boundary delineated in the Map of Snow Ice and Frozen Ground in China (1:4,000,000) (Yafeng Shi, et al., 1988). According to this data set, permafrost area in China is approximately 1.75×106 km2, accounting for 18.25% of the territory of China, among which the mountain permafrost area is 0.29×106 km2, which accounts for 3.03% of the territory of China. For more information, please refer to the Map of the Glaciers, Frozen Ground and Deserts in China (1:4,000,000) specification (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006).

    2020-01-11 0 View Details

  • Meteorological observation data from the integrated observation and research station of the alpine environment in Southeast Tibet (2007-2017)

    This data set includes daily average data of atmospheric temperature, relative humidity, precipitation, wind speed, wind direction, net radiance, and atmospheric pressure from 1 January 2007 to 31 December 2016 derived from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet. The data set has been used by students and researchers in the fields of meteorology, atmospheric environment and ecological research. The units of the various meteorological elements are as follows: temperature °C; precipitation mm; relative humidity %; wind speed m/s; wind direction °; net radiance W/m2; pressure hPa; and particulate matter with aerodynamic diameter less than 2.5 μm μg/m3. All the data are the daily averages calculated from the raw observations. Observations and data collection were carried out in strict accordance with the instrument operating specifications and the guidelines published in relevant academic journals; data with obvious errors were eliminated during processing, and null values were used to represent the missing data. In 2015, due to issues related to the age of the observation probe at the station, only the wind speed data for the last 8 months were retained.

    2020-01-10 0 View Details

  • Long-term surface soil freeze-thaw states dataset of China using the dual-index algorithm (1978-2015)

    This dataset uses daily temperature data from SMMR (1978-1987), SSM/I (1987-2009) and SSMIS (2009-2015). It is generated by the dual-index (TB, 37v, SG) freeze-thaw discrimination algorithm. The classification results include the frozen surface, the thawed surface, the deserts and water bodies. The data coverage is the main part of China’s mainland, with a spatial resolution of 25.067525 km via the EASE-Grid projection method, and it is stored in ASCIIGRID format. All the ASCII files in this data set can be opened directly with a text program such as Notepad. Except for the head file, the body content is numerically characterized by the freeze/thaw status of the surface soil: 1 for frozen, 2 for thawed, 3 for desert, and 4 for precipitation. If you want to use the icon for display, we recommend using the ArcView + 3D or Spatial Analyst extension module for reading; in the process of reading, a grid format file will be generated, and the displayed grid file is the graphical expression of the ASCII file. The read method comprises the following. [1] Add the 3D or Spatial Analyst extension module to the ArcView software and then create a new View. [2] Activate View, click File menu, and select the Import Data Source option. When the Import Data Source selection box pops up, select ASCII Raster in the Select import file type box. When the dialog box for selecting the source ASCII file automatically pops up, click to find any ASCII file in the data set, and then press OK. [3] Type the name of the Grid file in the Output Grid dialog box (it is recommended that a meaningful file name is used for later viewing) and click the path to store the Grid file, press OK again, and then press Yes (to select integer data) and Yes (to put the generated grid file into the current view). The generated files can be edited according to the Grid file standard. This completes the process of displaying an ASCII file into a Grid file. [4] In the batch processing, the ASCIGRID command of ARCINFO can be used to write AML files, and then use the Run command to complete the process in the Grid module: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}. The production of this data is supported by the following Natural Science Foundation Projects: Environmental and Ecological Science Data Center of West China (90502010), Land Data Assimilation System of West China (90202014) and Active and Passive Microwave Radiation Transmission Simulation and Radiation Scattering Characteristics of the Frozen Soil (41071226).

    2020-01-09 0 View Details

  • Meteorological observation data of comprehensive observation and research station of alpine environment in Southeast Tibet (2017-2018)

    This data set includes the daily average data of air temperature, relative humidity, precipitation, wind speed, wind direction, net radiation, air pressure, etc. of Southeast Tibet station from January 1, 2017 to December 31, 2018.

    2019-11-22 0 View Details

  • Meteorological observation data of Everest integrated atmospheric and environmental observation research station (2017-2018)

    This data set includes the daily average values of air temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, p2.5 concentration, short wave radiation, etc. observed by the comprehensive observation and research station of atmosphere and environment of Everest from 2017 to 2018.

    2019-11-22 0 View Details

  • Meteorological observation data of Namuco multi circle comprehensive observation and research station (2017-2018)

    This data set includes the daily values of temperature, air pressure, relative humidity, wind speed, precipitation, total radiation, etc. observed at Namuco station from January 1, 2017 to December 31, 2018.

    2019-11-21 0 View Details

  • The Third Pole 1:1,000,000 settlements distribution dataset (2014)

    The Third Pole 1:100,000 settlements distribution data set:Settlements(Tibet_Cities)、Capitals(Tibet_Capitals)、Cities up to 75K(Tibet_Cities_up_to_75K)vector space data set and its attribute name:Cities Name(ENG_NAME)、 urban population(CITY_POP) The data comes from the 1:100,000 ADC_WorldMap global data set,The data through topology, warehousing and other data quality inspection,Data through the topology, into the library,It's comprehensive, up-to-date and seamless geodigital data. The world map coordinate system is latitude and longitude, D_WGS_1984 datum surface

    2019-11-18 0 View Details

  • The Ice-core Dataset in Three Pole (1968-2015)

    The data of triode ice core mainly comes from NOAA (National Oceanic and Atmospheric Administration, The original data is mainly in text format, which is provided by relevant units and researchers voluntarily. The data mainly includes the original observation data such as oxygen isotope, greenhouse gas concentration, ice core age, etc., as well as the historical temperature, carbon dioxide concentration and methane concentration produced by the researchers according to the observation data. The data are mainly divided into Antarctic, Arctic, Greenland and the third polar region. The database includes drilling address, time, derivative products, corresponding observation site data, references and other elements. Derivative products include product name, type, time and other elements. The space location is divided into the south pole, the north pole and the third pole, including Alaska, Canada, Russia, Greenland and other regions. After sorting and post-processing the collected data, the ice core database is established by using the access database management system of Microsoft office. According to the Antarctic, Arctic, Greenland and the third pole, it is divided into four sub databases. The first table in each database is readme, which contains information and references of each data table.

    2019-11-17 0 View Details

  • Time-lapse observation dataset of soil temperature and humidity on the Tibetan Plateau (2008-2016)

    This data set comprises the plateau soil moisture and soil temperature observational data based on the Tibetan Plateau, and it is used to quantify the uncertainty of model products of coarse-resolution satellites, soil moisture and soil temperature. The observation data of soil temperature and moisture on the Tibetan Plateau (Tibet-Obs) are from in situ reference networks at four regional scales, which are the Nagqu network of cold and semiarid climate, the Maqu network of cold and humid climate, and the Ali network of cold and arid climate,and Pali network. These networks provided representative coverage of different climates and surface hydrometeorological conditions on the Tibetan Plateau. - Temporal resolution: 1hour - Spatial resolution: point measurement - Measurement accuracy: soil moisture, 0.00001; soil temperature, 0.1 °C; data set size: soil moisture and temperature measurements at nominal depths of 5, 10, 20, 40 - Unit: soil moisture, cm ^ 3 cm ^ -3; soil temperature, °C

    2019-11-14 0 View Details

  • Data of ad metal elements in Miaoergou ice core, Tianshan (1956-2004)

    This project is based on the data of bioactive elements such as Fe in miaergou ice core (94 ° 19 ′ e, 43 ° 03 ′ n, 4518 m) of the East Tianshan Mountains, and rebuilt the metal element history of 1956-2004. Data content: 1956-2004 ice core metal elements (including Fe, CD, Pb, as, Ba, Al, s, Mn, CO and Ni); data source, through ICP-MS test; data quality: blank sample is significantly lower than sample value, with better quality; data application results and prospects: data has been published, see Du, Z., Xiao, C., Zhang, W., Handley, M. J., mayewski, P. A., Liu, Y., & Li, X. (20. 19). Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956-2004. Atmospheric environment, 203, 121-130. It can provide comparative study of other ice cores in Central Asia.

    2019-10-26 0 View Details

  • Daily lake ice extent and cover proportion dataset of the Tibetan Plateau based on MODIS (2002-2018)

    There are many lakes on the Tibetan Plateau. The phenology and duration of lake ice age in this area is very sensitive to regional and global climate change, so it is used as a key indicator of climate change research, especially the comparative study of environmental changes in the Earth's three poles. However, due to its harsh natural environment and sparse population, it lacked routine field measurements of lake ice phenology. Using the Moderate-resolution Imaging Spectroradiometer (MODIS) to normalize the Different Snow Index (NDSI) data, the lake ice was monitored at a resolution of 500 meters to fill the observation gap. The traditional snow map algorithm was used to detect the daily ice volume and coverage extent of lakes under sunny condition. The spatial and temporal continuity of lake surface conditions was applied to re-determine the daily ice volume and coverage extent of lakes under cloud cover condition through a series of steps. Time series analysis was performed on 308 lakes larger than 3 k㎡ to determine effective record of lake ice extent and coverage, then to form a daily lake ice extent and coverage data set. And furthermore, four lake ice phenological parameters: freeze-up start ( FUS), freeze-up end (FUE), break-up start (BUS), and break-up end (BUE) can be obtained from 216 lakes of the data set, and two parameters: FUS and BUE can be obtained from the other 92 lakes.

    2019-10-21 0 View Details

  • River ice cover dataset of Erqis River Basin (2004-2005) v1.0

    River ice is the main component of the cryosphere, and the freezing of rivers in the polar region has a significant impact on the Arctic shipping and transportation industry. With the construction of "ice silk road" between China and Russia, monitoring the change of river ice in Erqis river basin can provide theoretical basis for river navigation. The sparse distribution of hydrological stations in the Arctic limits the study of river ice. The limited available data of hydrological stations show that the trend of river ice rupture is ahead of schedule, but the specific climate mechanism driving this trend is very complex. Therefore, optical data with high temporal resolution (such as MODIS products) are suitable for monitoring river ice phenology and mapping river ice cover range, which is helpful to understand the process of river ice rupture. Based on MODIS and passive microwave data, a method of monitoring river ice in Erqis River Basin by using different remote sensing data is realized in this study, in order to analyze the phenological parameters of river ice such as the time of river closure, the time of river closure, the speed of river opening, the speed of river closure and the duration of freezing period. At the same time, it is helpful to understand the response of river ice breaking process to Arctic climate warming.

    2019-10-21 0 View Details

  • Three-pole population &GDP dataset (1970-2006)

    The data set includes: population and GDP data of the arctic (1990-2015) and county-level population and GDP data of the third pole region (gansu, qinghai and Tibet) (1970-2016). Socio-economic statistical attributes include: population (ten thousand), GDP (ten thousand yuan), total industrial and agricultural output (ten thousand yuan), total agricultural output (ten thousand yuan), and total industrial output (ten thousand yuan). The arctic population data are mainly derived from the world populationProspects: 2017 revision by the Department of economic and social affairs, which divides the total population by region and country. The data of the third pole mainly refer to the statistical yearbook of gansu province, qinghai province and Tibet autonomous region.County records of gansu, qinghai and Tibet autonomous regions.

    2019-09-29 0 View Details