The global reach-level 3-hourly river flood reanalysis (GRFR) dataset includes 1) global 0.05 degree, 3-hourly/daily runoff data, 2) 3hourly/daily naturalized river discharge at 2.94 million river reaches, 3) global 3-hourly river flood events from 1980 to 2019, 4) underlying hydrography MERIT-Basins. Grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, the 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019 was developed. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias-corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) sub-daily modeling. The GRFR database represents a pioneering effort on global reach-level flood reanalysis and may offer new opportunities for global flood studies in terms of baseline data and potential research pathways. Also, it can better help river-observing satellite missions to develop their discharge algorithms.
YANG Yuan , PAN Ming , LIN Peirong
Natural runoff simulation data products of 2.94 million river sections in the world, unit: m3/s. This data is based on the simulation of VIC hydrological process model and RAPID vector river network concentration model. The spatial resolution of the land surface hydrological process model is 0.25 °, and the river network data in the vector concentration model is extracted based on the 90-m MERIT Hydro hydrological correction terrain data product. The runoff generation part is calibrated based on the runoff characteristic values obtained by machine learning, and the grid scale runoff generation deviation correction is carried out based on the multi quantile runoff characteristic values. The data products are verified by 14000 runoff observation stations around the world, and have better verification accuracy.
LIN Peirong , PAN Ming , YANG Yuan
Three different data sources are used, including maps of the early Republic of China in 1920s, digital topographic maps in 1960 and Landsat MSS/TM/ETM+/OLI images from 1970 to 2020. In 1920s, the maps were scanned, geometrically corrected and georeferenced. In the 1960s, 1:250000 topographic maps were used. All maps are georeferenced by Albers Equivalent Conical Projection, and the root mean square (RMS) error is less than 1.5 pixels. For the early maps, visual interpretation and manual digitization were chosen to vectorize the lake boundaries. Since 1990, the semi-automatic water body classification method has been used to distinguish water body and non water body information from Landsat images, and then the lake boundary has been extracted, and visual inspection and manual editing have been carried out by comparing with the original Landsat images.
ZHANG Guoqing, RAN Youhua
This data is generated based on meteorological observation data, hydrological station data, combined with various assimilation data and remote sensing data, through the preparation of the Qinghai Tibet Plateau multi-level hydrological model system WEB-DHM (distributed hydrological model based on water and energy balance) coupling snow, glacier and frozen soil physical processes. The time resolution is monthly, the spatial resolution is 5km, and the original data format is ASCII text format, Data types include grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation in the month). If the asc cannot be opened normally in arcmap, please top the first 5 lines of the asc file.
WANG Lei, CHAI Chenhao
This data is a 5km monthly hydrological data set, including grid runoff and evaporation (if evaporation is less than 0, it means condensation; if runoff is less than 0, it means precipitation is less than evaporation), simulated and output through the WEB-DHM distributed hydrological model of the Indus River basin, with temperature, precipitation, barometric pressure, etc. as input data.
WANG Lei, LIU Hu
Water is one of the most direct mediums through which people perceive the effects of climate change. The flow regimes that people rely on are influenced by large-scale climate change, and identifying changes to these regimes and determining their causes requires reliable, spatiotemporally continuous runoff records. China is climate vulnerable due to its remarkable topographic gradients, monsoon climate, and rapid economic development. Climate change has increased the urgency of understanding, regulating, and forecasting China’s freshwater flows. Yet, available global and regional runoff data in China are produced from sparse, poor-quality gauged station data that have been acquired over different time scales. Our research presents a new long-term, high-quality natural runoff dataset, named the China Natural Runoff Dataset version 1.0 (CNRD v1.0) for driving hydrological and climate studies over China. It will also contribute to the global runoff database. CNRD v1.0 provides daily, monthly, and annual 0.25-degree natural runoff estimates for the period of 1 January 1961 to 31 December 2018 over China. CNRD v1.0 is generated using the Variable Infiltration Capacity macroscale hydrological model, which was used to fill in gaps or construct time series of comparable lengths. To control the model performance and thus our dataset quality, the model’s sensitive parameters are automatically calibrated using an adaptive surrogate modeling‐based optimization algorithm based on monthly natural or near-natural streamflow data from 200 hydrological gauge stations—more than in previous studies—with low fractions of missing data. Another important quality control adopted for this dataset was the use of a multiscale parameter regionalization technique to estimate model parameters for ungauged basins. Overall, the results show well-calibrated parameters for most gauged catchments, and the skill scores, the Nash–Sutcliffe model efficiency coefficient (NSE) present high values for all catchments, with an average of 0.83 and 0.80 for calibration and validation modes, respectively. The multiscale parameter regionalization technique offered the best regionalization solution (median NSE = 0.76 for the calibration period and 0.72 for the validation period. The results overall show well-calibrated and regionalized parameters for the hydrological model thus for the long-term runoff reconstruction. By the cell-to-cell comparisons between the CNRD v1.0 with the two global runoff datasets, ISIMIP and GRUN, we found that our datasets show more continuous transitions in runoff dis¬tribution compared to ISIMIP and GRUN across China, and perform well in representing the geographic distribution of China’s water resources across complex terrain and climate regions.
MIAO Chiyuan, GOU Jiaojiao
Water cover is one of the basic parameters of water cycle and energy balance. Based on the AVHRR daily reflectance time series from 1982 to 2020, this data set has produced 39 year long-term daily water body mapping products (including water body icing information) on the Qinghai Tibet Plateau. This dataset contains 39 folders, named after the year (from 1982 to 2020). Each folder contains 365 / 366 GeoTIFF files, and each file contains two bands: (1) water mapping band (waterlayer); (2) Quality control information band (QC). This product provides data support for remote sensing monitoring of water bodies in the Qinghai Tibet Plateau.
JI Luyan
This data includes bacterial 16S ribosomal RNA gene sequence data from 25 lakes in the middle of the Qinghai Tibet Plateau. The sample was collected from July to August 2015, and the surface water was sampled three times with a 2.5 liter sampler. The samples were immediately taken back to the Ecological Laboratory of the Beijing Qinghai Tibet Plateau Research Institute, and the salinity gradient of the salt lake was 0.14~118.07 g/L. This data is the result of amplification sequencing. Concentrate the lake water to 0.22 at 0.6 atm filtration pressure μ The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGCGGTAA-3') and 909r (5 '- GGACTACHVGGGTWTCTAAT-3'). The Illumina MiSeq PE250 sequencer was used for end-to-end sequencing. The original data was analyzed by Mothur software. The sequence was compared with the Silva128 database and divided into operation classification units (OTUs) with 97% homology. This data can be used to analyze the microbial diversity of lakes in the Qinghai Tibet Plateau.
KONG Weidong
The basic data of hydrometeorology, land use and DEM were collected through the National Meteorological Information Center, the hydrological Yearbook, the China Statistical Yearbook and the Institute of geographical science and resources of the Chinese Academy of Sciences. The distributed time-varying gain hydrological model (DTVGM) with independent intellectual property rights is adopted for modeling, and the Qinghai Tibet Plateau is divided into 10937 sub basins with a threshold of 100 square kilometers. The daily flow data of 14 flow stations in Heihe River, Yarlung Zangbo River, Yangtze River source, Yellow River source, Yalong River, Minjiang River and Lancang River Basin were selected to draft and verify the model. The daily scale Naxi efficiency coefficient is above 0.7 and the correlation coefficient is above 0.8. The model simulates the water cycle process from 1998 to 2017, and gives the spatial and temporal distribution of 0.01 degree daily scale runoff in the whole Qinghai Tibet Plateau.
YE Aizhong
The data set includes the observed and simulated runoff into the sea and the composition of each runoff component (total runoff, glacier runoff, snowmelt runoff, rainfall runoff) of two large rivers in the Arctic (North America: Mackenzie, Eurasia: Lena), with a time resolution of months. The data is a vic-cas model driven by the meteorological driving field data produced by the project team. The observed runoff and remote sensing snow data are used for correction. The Nash efficiency coefficient of runoff simulation is more than 0.85, and the model can also better simulate the spatial distribution and intra/inter annual changes of snow cover. The data can be used to analyze the runoff compositions and causes of long-term runoff change, and deepen the understanding of the runoff changes of Arctic rivers.
ZHAO Qiudong, WU Yuwei
This product provides the data set of key variables of the water cycle of major Arctic rivers (North America: Mackenzie, Eurasia: Lena from 1971 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 0.1degree and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under long-term climate change, and can also be used to compare and verify remote sensing data products and the simulation results of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
This product provides the data set of key variables of the water cycle of Arctic rivers (North America:Mackenzie, Eurasia:Lena) from 1998 to 2017, including 7 variables: precipitation, evapotranspiration, surface runoff, underground runoff, glacier runoff, snow water equivalent and three-layer soil humidity, which are numerically simulated by the land surface model vic-cas developed by the project team. The spatial resolution of the data set is 50km and the temporal resolution is month. This data set can be used to analyze the change of water balance in the Arctic River Basin under climate change, and can also be used to compare and verify remote sensing data products and the simulations of other models.
ZHAO Qiudong, WANG Ninglian, WU Yuwei
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
WANG Shijin
This dataset contains the monthly evaporation rate and volumes for 7242 reservoirs from March 1984 to December 2016 across the world. The evaporation rate was calculated using the three datasets viz. (1) TerraClimate; (2) ERA5; (3) Princeton Global Forcings. The surface area of these reservoirs is obtained from the Global reservoir surface area dataset (GRSAD). The detailed descriptions for this dataset are presented in Tian et al (2021,2022). The basic information of the global reservoirs was provided by the Global Reservoir and Dam Database (GRanD).
TIAN Wei , LIU Xiaomang, WANG Kaiwen , BAI Peng , LIU Changming
Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.
WANG Shijin
This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from Janurary 1 to December 31, 2021. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. As the lake water freezes in winter, the water temperature probe is withdrawn, so there is no water temperature data record during October 19, 2020 to December 31, 2020. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.
Li Xiaoyan
This data set contains the meteorological data of Pengbo irrigation area in Tibet from 2019 to 2022, including rainfall, temperature and relative humidity data, as well as the measured soil moisture and soil temperature data of highland barley, oat and grassland. The data interval is recorded in hours, and the measured time is from 2019 to 2022. The data of soil temperature and soil moisture are relatively detailed, which can reflect the change law of soil moisture and temperature at different time scales of time, day, month, season and year, and can also better meet the calibration and verification requirements of farmland water and heat transport model. The data set also includes crop evapotranspiration data and leakage data, which is helpful to analyze the water consumption of crops in the whole growth period and the water consumption and leakage at different growth stages in the alpine region of Tibet, and plays an important role in clarifying the water balance of different farmland systems. The meteorological, soil moisture, soil temperature, transpiration and leakage data of Pengbo irrigation area in Tibet provided by this data set are helpful to reveal the water transformation process at the farmland scale and irrigation area scale, and fully understand the water and heat transfer process and crop growth state of SPAC system in the high cold region of Tibet.
TANG Pengcheng
This dataset contains the ground surface water (including liquid water, glacier and perennial snow) distribution in Qilian Mountain Area in 2021. The dataset was produced based on classical Normalized Difference Water Index (NDWI) extraction criterion and manual editing. Landsat images collected in 2021 were used as basic data for water index extraction. Sentinel-2 images and Google images were employed as reference data for adjusting the extraction threshold. The dataset was stored in SHP format and attached with the attributions of coordinates and water area. Consisting of 1 season, the dataset has a temporal resolution of 1 year and a spatial resolution of 30 meters. The accuracy is about 1 pixel (±30 meter). The dataset directly reflects the distribution of water bodies within the Qilian Mountain in 2021, and can be used for quantitative estimation of water resource.
Li Jia Li Jia LI Jia LI Jia
From September 3 to September 9, 2020, groundwater and surface water were collected in the upper reaches of Nujiang River Basin (i.e. Naqu basin in Nujiang River source area), and the samples were immediately put into 100 ml high density polyethylene (HDPE) bottles. 18O and D are analyzed and tested by liquid water isotope analyzer (picarro l2140-i, USA), and the stable isotope ratio is expressed by the thousand difference relative to Vienna "standard average seawater" (VSMOW). δ 18O and δ The analysis error of D is ± 0.1 ‰ and ± 1 ‰ respectively. It provides basic data support for subsequent analysis of groundwater source analysis in Naqu basin.
LIU Yaping , CHEN Zhenghao
To further investigate the transport process and temporal-spatial evolution of solid material in the Yarlung Zangbo River basin, the Sitting Bottom Bionic Water and sediment Observation System, which is the first set of good at the strong hydrodynamic condition and can continuously measure flow-sediment processes in real-time, was installed at Yangcun hydrology station by the sedimentary Dynamics observation team of Sichuan University on May 15, 2021. The bionic system was equipped with different types of observation equipment for water and sediment characteristics, which can measure the critical characteristics of water and sediment motion with high time resolution for a long time, continuously and synchronously. This data set contains the continuous data of 1) vertical velocity distribution (ADCP20210515.xlsx), 2) instantaneous velocity and turbulence of a single point near-bed, 3) Suspended sediment concentration measured by super turbidimeter (AOBS20210515.xlsx), 4) water depth, suspended sediment concentration and size distribution measured by Laser granulometer (Lisst20210515.xlsx). The data set with nearly a month recorded synchronous and continuous observation data of water and sediment characters with high temporal resolution per 10 minutes, which successfully observed the coupling change process of water and sediment under the increasing discharge of Yarlung Zangbo River. The simultaneous and continuous observation technology of water and sediment based on the bionic observation system provides technical support and scientific basis for revealing the source to sink process and evolution of Yarlung Zangbo River, bedload transport, flood numerical simulation, flash flood disaster warning and prevention, and major infrastructure construction.
XU Weilin, HUANG Er, YAN Xufeng, LUO Ming, WANG Lu, WANG Xiekang, MA Xudong, LIU Chao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn