Meteorological elements of the dataset include the near-surface land-air exchange parameters, such as downward/upward longwave/shortwave radiation flux, momentum flux, sensible heat flux, latent heat flux, etc. In addition, the vertical distributions of 3-dimensional wind, temperature, humidity, and pressure from the surface to the tropopause are also included. Independent evaluations were conducted for the dataset by comparison between the observational data and the most recent ERA5 reanalysis data. The results demonstrate the accuracy and superiority of this dataset against reanalysis data, which provides great potential for future climate change research.
LI Fei, Ma Shupo, ZHU Jinhuan, ZOU Han , LI Peng , ZHOU Libo
This data set is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including ecosystem net ecosystem productivity (NEP), total primary productivity (GPP) and ecosystem respiration (ER) data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
This dataset is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including net ecosystem productivity (NEP), total primary productivity (GPP), ecosystem respiration (ER), evapotranspiration, latent heat, sensible heat, air temperature, relative humidity, wind speed, soil temperature, soil moisture and other data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.
PAN Xiaoduo
1) Data content It includes the observation year, latitude and longitude, altitude, ecosystem type and soil layer (soc0-100 (kgcm-2); 0-100 represents soil layer), underground biomass content. 2) Data sources This part of the data is obtained from the literature, specific literature sources refer to the documentation. 3) Data quality description The data cover a wide range, including comprehensive indicators, showing the content of soil organic carbon under different soil layers, with high integrity and accuracy, which can meet the estimation of soil carbon storage of grassland in Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect of soil and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
1) Data content It includes the observation year, longitude and latitude, ecosystem type, annual rainfall, drought index, annual net primary productivity, aboveground biomass, underground biomass and other data. 2) Data sources One part is from literature (1980-1995), the other part is from field sampling (2005-2006). 3) Data quality description The data has a long observation year, a large time span, a wide coverage, and many indicators, which has high integrity and accuracy, and can meet the estimation of grassland carbon storage in the Qinghai Tibet Plateau. 4) Data application achievements and Prospects It provides basic data for predicting the carbon source sink effect and realizing the sustainable development of ecosystem carbon in the future.
HU Zhongmin
The dataset of ground truth measurement synchronizing with MODIS was obtained in the Linze grassland foci experimental area on Jun. 22, 2008. Simultaneous east-west ground measurements on the canopy temperature, the half-height temperature and the land surface radiative temperature were carried out by the hand-held infrared thermometer at intervals of 125m in 8 quadrates (2km×2km), No.1 quadrate (H01-H08) on Jun. 22, No.2 quadrate (H09-H16) on Jun. 23,No.3 quadrate (H17-H24) on Jun. 22, No.4 quadrat (H25-H32) on Jun. 23, No.5 quadrate (H33-H40) on Jun. 22, No.6 quadrate (H41-H48) on Jun. 23, No,7 quadrate (H49-H56) and No.8 quadrate (H57-H64) on Jun. 23. Data were archived in Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, NIAN Yanyun, WANG Xufeng, LIANG Wenguang
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on May 30, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data included the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C, the alfalfa plot D and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m, and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying measured by the cutting ring and the mean soil temperature from 0-5cm measured by the probe thermometer in plot A, B and C; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, and the mean soil temperature from 0-5cm measured by the probe thermometer in plot D and E. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, CHAO Zhenhua, GE Chunmei, HAN Xujun, HU Xiaoli, HUANG Chunlin, LIANG Ji, WANG Shuguo, WU Yueru, FENG Lei, YU Fan, WANG Jing
The dataset of ground truth measurements synchronizing with the airborne microwave radiometers (L&K bands) mission was obtained along the sample lines 1, 2, 3, 4, 5 and 6 of the Linze grassland foci experimental area on May 25, 2008. Complementary measurements were carried out along Line 7 on Jun. 2. 25 points at intervals of 100m were selected at each line. Simultaneous with the satellite overpass, numerous ground data were collected, the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity measured by the POGO soil sensor, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured three times by the hand-held infrared thermometer in L1, L2, L3 and L4; soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were measured by WET, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured three times by the hand-held infrared thermometer in L5 and L6; the soil temperature, soil moisture, the loss tangent, soil conductivity, the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, the mean soil temperature from 0-5cm measured by the probe thermometer, and the surface radiative temperature measured by the hand-held infrared thermometer, and soil gravimetric moisture, volumetric moisture, and soil bulk density measured by the cutting ring in L7. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CHAO Zhenhua, GE Chunmei, HAN Xujun, HUANG Chunlin, RAN Youhua, SONG Yi
The dataset of ground truth measurements synchronizing with MODIS, ALOS PALSAR and AMSR-E was obtained in the Biandukou foci experimental area on May 24, 2008. Observation items included: (1) the surface temperature in No. 1 (grassland), No. 2 (the rape land), No. 3 (the rape land), No. 4 (the wheat land) and No. 5 quadrate (wheat and rape); (2) the soil moisture by WET in No. 2 quadrate; (3) GPR and WET; (4) The spectrum by ASD Fieldspec FRTM (Boulder, Co, USA), 350nm-2500nm, 3nm for the visible near-infrared band and 10nm for the shortwave infrared band). The spectrum data were archived in the ASCII format, with the first five rows as the file header and the following two columns as wavelength (nm) and reflectance (percentage) respectively, and can be opened by .txt or wordpad. The .txt file was not reflectance but intermediate file for further calculation. Raw data were binary files direct from ASD (by ViewSpecPro). The surface radiative temperature and the physical temperature were measured by the handheld infrared thermometer. Besides, the cover type was also recorded. The data can be opened by Microsoft Office. Soil moisture was acquired by WET and the cutting ring. The data can be opened by Microsoft Office. Six data files were included, soil moisture, the surface temperature, GPR, coverage photos and preprocessed data, ground objects spectrum and satellite images.
BAI Yunjie, CAO Yongpan, CHE Tao, DU Ziqiang, HAO Xiaohua, WANG Zhixia, WU Yueru, CHAI Yuan, CHANG Sheng, QIAN Yonggang, SUN Xiaoqing, WANG Jindi, YAO Dongping, ZHAO Shaojie, ZHENG Yue, ZHAO Yingshi, LI Xiaoyu, PATRICK Klenk, HUANG Bo, LI Shihua, LUO Zhen
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1 and 2 quadrates of the A'rou foci experimental area on Oct. 18, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:17 BJT. Both the quadrates were divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity by the WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No.1 (freeze/thaw status), No. 2 (snow parameters) and No. 3 (freeze/thaw status) quadrates of the A'rou foci experimental areas on Mar. 12, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Center and corner points of each subsite were chosen for all observations except for the cutting ring measurements which only observed the center points. In No. 1 quadrate, numerous ground data were collected, the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity by the POGO soil sensor, soil volumetric moisture by ML2X, the soil volumetric moisture profile (10cm, 20cm, 30cm, 40cm, 60cm and 100cm) by PR2, the mean soil temperature from 0-5cm by the probe thermometer, soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). In No. 2 quadrate, simultaneous with ASAR, snow parameters were measured, the snow surface temperature by the thermal infrared probe, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, the snow surface temperature and the snow-soil interface temperature by the thermal infrared probe, snow spectrum by ASD, and snow albedo by the total radiometer. In No. 3 quadrate soil volumetric moisture, soil conductivity, the soil temperature, and the real part of soil complex permittivity were measured by WET, the mean soil temperature from 0-5cm by the probe thermometer (5# and 7#), the surface radiative temperature by the hand-held infrared thermometer (5#), and soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Besides, GPR (Ground Penetration Radar) observations were also carried out in No. 1 quadrate of A'rou. Those provide reliable ground data for retrieval and verification of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yanfen, CAO Yongpan, GE Chunmei, GU Juan, HAN Xujun, LI Zhe, LIANG Ji, MA Mingguo, SHU Lele, WANG Jianhua, WANG Xufeng, WU Yueru, XU Zhen, QU Wei, CHANG Cun, DOU Yan, MA Zhongguo, YU Meiyan, ZHAO Jin, JIANG Tenglong, XIAO Pengfeng , LIU Yan, ZHANG Pu, PATRICK Klenk, YUAN Xiaolong
The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No.2 quadrate of the A'rou foci experimental area on Oct. 17, 2007 during the pre-observation period. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 23:04 BJT. The quadrate was divided into 3×3 subsites, with each one spanning a 30×30 m2 plot. 25 sampling points were chosen, including centers and corners of each subsites. Simultaneous with the satellite overpass, numerous ground data were collected, soil volumetric moisture by ML2X; soil volumetric moisture, soil conductivity, soil temperature, and the real part of soil complex permittivity by WET soil moisture sensor; the surface radiative temperature by the hand-held infrared thermometer; soil gravimetric moisture, volumetric moisture, and soil bulk density after drying by the cutting ring (100cm^3). Meanwhile, vegetation parameters as height, coverage and water content were also observed. Surface roughness was detailed in the "WATER: Surface roughness dataset in the A'rou foci experimental area". Those provide reliable ground data for retrieval and validation of soil moisture and freeze/thaw status from active remote sensing approaches.
BAI Yunjie, HAO Xiaohua, LI Hongyi, LI Xin, LI Zhe
The dataset of continuous LST (Land Surface Temperature) observation was obtained by the automatic thermometer in the Linze grassland foci experimental area. Six devices numbered from #1 to #6 were used. Observations were carried out in the reed plot A, the saline plots B and C, the alfalfa plot D, the barley plot E and the temporary farmland on Jun. 10 and 11, 2008 and in plots A, B and E on Jul. 11, 2008. Observation time and the land surface radiative temperature were archived in Word, txt and Excel format. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental of Linze station area for more information.
HUANG Chunlin, CHAO Zhenhua, GE Chunmei, HU Xiaoli, LIU Chao, NIAN Yanyun, WANG Shuguo, WANG Xufeng, WU Yueru, WANG Jing
Zhanye Airport desert observation system can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large, homogeneous and flatten desert near by Zhangye Airport. The main vegetation type is Sparse and low shrub. The coordinates of this site: 38°4′41.30" N, 100°41′48.10" E. Observation Instrument: The observation system consists of two SI-111 infrared radiometers (Campbell, USA), one installed vertically downward to land surface, another face to south of zenith angle 35°. SI-111 sensor installed at 4.0 m height. Observation Time: This site operates from 10 June, 2012 to today. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface infrared temperature (by SI-111), sky infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: TarT_Atm, Sky infrared temperature @ facing south of zenith angle 35° (℃); SBT_Atm, body temperature of SI-111 sensor (℃) measured sky; TarT_Sur, land surface infrared temperature @ 4.0 m height; SBT_Sur, body temperature of SI-111 sensor (℃) measured land surface. Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
A land surface temperature and upward/downward shortwave radiation observation system was set up on the roof, which locate on the edge of No.4 eddy covariance system (EC4) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous adobe roof in Shiqiao Village, Xiaoman Town, Zhangye City. Land surface of observation site is relatively flat and uniform, and also not tall trees around. It’s about 20 meters away from southwest No.4 eddy covariance system (EC4) observation points. The coordinates of this site: 38°52′38.50″ N,100°21′27.00″ E。 Observation Instrument: Observation system is composed of a SI-111 infrared radiometer (Campbell, USA) installed vertically downward, two CMP3 pyranometer (Kipp&Zonen, Netherlands) one upward, another downward. Observation height is 1.0 m, data logging by a Campbell CR850 logger. Sensor orientation: Observation mounting arm has 3 m long, parallel to roof edge, azimuth angle: 156° (East by south 66°) Observation Time: This site operates from 23 June, 2012 to 20 September, 2012. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface (adobe roof) temperature, downward/upward total solar radiation, surface albedo. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Rs_downwell, downward shortwave radiation (W/m^2); Rs_upwell, upward (reflect) shortwave radiation (W/m^2); albedo, calculate by Rs_upwell/ Rs_downwell. SBT_C, body temperature of SI-111 sensor (℃); Target_C, Target of surface temperature (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
MA Mingguo
The dataset of ground truth measurements synchronizing with airborne WiDAS mission was obtained in the Linze grassland foci experimental area on Jun. 29, 2008. WiDAS, composed of four CCD cameras, one mid-infrared thermal imager (AGEMA 550), and one infrared thermal imager (S60), can acquire CCD, MIR and TIR band data. The simultaneous ground data were mainly the land surface temperature measured by the hand-held infrared thermometer in the reed plot A, the saline plots B and C and the barley plot E, the maximum of which were 120m×120m and the minimum were 30m×30m. Data were archived in Excel file. See WATER: Dataset of setting of the sampling plots and stripes in the foci experimental area of Linze station for more information.
CAO Yongpan, GE Chunmei, HU Xiaoli, HUANG Chunlin, WANG Shuguo, Wang Jing
The dataset of automatic meteorological observations was obtained at the Dayekou Guantan forest station (E100°15′/N38°32′, 2835m), south of Zhangye city, Gansu province, from Oct. 1, 2007 to Dec. 31, 2009. Guantan forest station was dominated by the 15-20m high spruce and the surface was covered by 10cm deep moss. All the vegetation was in good condition. Observation items were the multilayer (2m and 10m) wind speed and direction, the air temperature and moisture, rain and snow gauges, snow depth, photosynthetically active radiation, four components of radiation from two layers (, 1.68m and 19.75 m), stem sap flow, the surface temperature, the multi-layer soil temperature (5cm, 10cm, 20cm, 40cm, 80cm and 120cm),soil moisture (5cm, 10cm, 20cm, 40cm, 80cm and 120cm) and soil heat flux (5cm & 15cm). As for detailed information, please refer to Meteorological and Hydrological Flux Data Guide.
MA Mingguo, Wang Weizhen, TAN Junlei, HUANG Guanghui, Zhang Zhihui
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn