This data set is the conventional meteorological observation data of the Ngoring Lake Grassland Observation site (GS) in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity(specific humidity in 2020), air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
This data set is the conventional meteorological observation data of Maqu grassland observation site in the source region of the Yellow River from 2017 to 2020, obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments, with a time resolution of half an hour. Mainly include wind speed, wind direction, temperature, relative humidity, air pressure, downward short-wave radiation, downward long-wave radiation, precipitation.
MENG Xianhong, LI Zhaoguo
Zoige Wetland observation point is located at Huahu wetland (102 ° 49 ′ 09 ″ E, 33 ° 55 ′ 09 ″ N) in Zoige County, Sichuan Province, with an initial altitude of 3435 m. The underlying surface is the alpine peat wetland, with well-developed vegetation, water and peat layer. This data set is the meteorological observation data of Zoige Wetland observation point from 2017 to 2019. It is obtained by using Kipp&Zonen CNR4, Vaisala HMP155A, PTB110 and other instruments. The time resolution is half an hour, mainly including wind speed, wind direction, air temperature, relative humidity, air pressure, downward short wave radiation, downward long wave radiation.
MENG Xianhong, LI Zhaoguo
1. Data content: air temperature, relative humidity, precipitation, air pressure, wind speed, average total radiation, total net radiation value and daily average water vapor pressure data. 2. Data source and processing method: Observed by American campel high-altitude automatic weather station, air temperature and humidity sensor model HMP155A; wind speed and wind direction model: 05103-45; net radiometer: CNR 4 Net Radiometer four component; atmospheric pressure sensor: CS106; Rain gauge: TE525MM. The automatic weather station automatically collects data every 10 minutes, and collects daily statistical data to obtain daily average weather data. 3. Data quality description: Data is automatically acquired continuously. 4. Data application results and prospects: The weather station is located in the middle of the glacier, and the meteorological data can provide data guarantee for simulating the response of oceanic glacier changes to global climate change in the context of future climate change.
LIU Jing
Solar global and direct radiation are measured by radiation sensors (Model TBQ-4-1, TBS-2, China), and temperature and humidity are measured by a HOBO weather station (Model H21, onset company, USA). This dataset is solar radiation and meteorological variables, including solar globla and direct radiation in the wavelength range of 270-3200nm, unit: w/m2. The units of temperature, humidity and water vapor pressure are ℃, %, hPa, respectively. The dataset of solar radiation and meteorological elements come from the measurements of data providers. Data coverage time is 2013-2016. The data set can be used to study the solar radiation and its change mechanism in a subtropical region, China.
BAI Jianhui
The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.
PAN Xiaoduo
Photosynthetically active radiation (PAR) is fundamental physiological variable driving the process of material and energy exchange, and is indispensable for researches in ecological and agricultural fields. In this study, we produced a 35-year (1984-2018) high-resolution (3 h, 10 km) global grided PAR dataset with an effective physical-based PAR model. The main inputs were cloud optical depth from the latest International Satellite Cloud Climatology Project (ISCCP) H-series cloud products, the routine variables (water vapor, surface pressure and ozone) from the ERA5 reanalysis data, aerosol from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) products and albedo from Moderate Resolution Imaging Spectroradiometer (MODIS) product after 2000 and CLARRA-2 product before 2000. The grided PAR products were evaluated against surface observations measured at seven experimental stations of the SURFace RADiation budget network (SURFRAD), 42 experimental stations of the National Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese Ecosystem Research Network (CERN). The instantaneous PAR was validated at the SURFRAD and NEON, and the mean bias errors (MBEs) and root mean square errors (RMSEs) are 5.6 W m-2 and 44.3 W m-2, and 5.9 W m-2 and 45.5 W m-2, respectively, and correlation coefficients (R) are both 0.94 at 10 km scale. When averaged to 30 km, the errors were obviously reduced with RMSEs decreasing to 36.3 W m-2 and 36.3 W m-2 and R both increasing to 0.96. The daily PAR was validated at the SURFRAD, NEON and CERN, and the RMSEs were 13.2 W m-2, 13.1 W m-2 and 19.6 W m-2, respectively at 10 km scale. The RMSEs were slightly reduced to 11.2 W m-2, 11.6 W m-2, and 18.6 W m-2 when upscaled to 30 km. Comparison with the other well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES) reveals that our PAR product was a more accurate dataset with higher resolution than the CRERS. Our grided PAR dataset would contribute to the ecological simulation and food yield assessment in the future.
TANG Wenjun
The temporal resolution of temperature and radiation data in Central Asia is monthly scale, and the spatial resolution is 0.5 degree and 0.05 degree, respectively. The GCS_WGS_1984 projection coordinate system was used. Among them, the downward short wave radiation, air temperature and vapor pressure data of GLDAS, surface temperature / emissivity data of MOD11C3, surface albedo data of MCD43C3 and ASTER_GEDv4.1 are used for radiation data calculation; the temperature data was calculated by MOD06_ L2 cloud products and MOD07_ L2 atmospheric profile data was calculated. This data is based on the advanced remote sensing algorithm and makes full use of the current high-precision remote sensing data and products, which is different from the traditional climate model for the estimation of climate elements. The data can be used to analyze the spatial and temporal variation characteristics of water resources in Central Asia, analyze the supply-demand relationship of agricultural water resources and evaluate the development potential of water resources.
SONG Jinxi, JIANG Xiaohui
1) The Qinghai Tibet plateau surface meteorological driving data set (2019-2020) includes four meteorological elements: land surface temperature, mean total precipitation rate, mean surface downward long wave radiation flux and mean surface downward short wave radiation flux. 2) The data set is based on era5 reanalysis data, supplemented by MODIS NDVI, MODIS DEM and fy3d mwri DEM data products. The era5 reanalysis data were downscaled by multiple linear regression method, and finally generated by resampling. 3) All data elements of the Qinghai Tibet plateau surface meteorological driving data set (2019-2020) are stored in TIFF format. The time resolution includes (daily, monthly and annual), and the spatial resolution is unified as 0.1 ° × 0.1°。 4) This data is convenient for researchers and students who will not use such assimilated data in. NC format. Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data.
ZHU Liping, DU Baolong
Surface solar irradiance (SSI) is one of the products of FY-4A L2 quantitative inversion. It covers a full disk without projection, with a spatial resolution of 4km and a temporal resolution of 15min (there are 40 observation times in the whole day since 20180921, except for the observation of each hour, there is one observation every 3hr before and after the hour), and the spectral range is 0.2µ m~5.0 µ m. The output elements of the product include total irradiance, direct irradiance on horizontal plane and scattered irradiance, the effective measurement ranges between 0-1500 w / m2. The qualitative improvement of FY-4A SSI products in coverage, spatial resolution, time continuity, output elements and other aspects makes it possible to further carry out its fine application in solar energy, agriculture, ecology, transportation and other professional meteorological services. The current research results show that the overall correlation of FY-4A SSI product in China is more than 0.75 compared with ground-based observation, which can be used for solar energy resource assessment in China.
SHEN Yanbo, HU Yueming, HU Xiuqing
As an important part of global semi-arid grassland, adequately understanding the spatio-temporal variability of evapotranspiration (ET) over the temperate semi-arid grassland of China (TSGC) could advance our understanding of climate, hydrological and ecological processes over global semi-arid areas. Based on the largest number of in-situ ET measurements (13 flux towers) within the TSGC, we applied the support vector regression method to develop a high-quality ET dataset at 1 km spatial resolution and 8-day timescale for the TSGC from 1982 to 2015. The model performed well in validation against flux tower‐measured data and comparison with water-balance derived ET.
LEI Huimin
The data set collected long-term monitoring projects from multiple stations for atmosphere, hydrology and soil in the North Tibetan Plateau. The data set consisted of monitoring data obtained from the automatic weather station (AWS) and the atmospheric boundary layer tower (PBL) in the field. The sensors for temperature, humidity and pressure were provided by Vaisala of Finland; the sensors for wind speed and direction were provided by Met One of America, the radiation sensors were provided by APPLEY of America and EKO of Japan; the gas analyzers were provided by Licor of America; the soil water content instrument, ultrasonic anemometers and data collectors were provided by CAMPBELL of America. The observation system was maintained by professionals regularly (2-3 times a year), the sensors were calibrated and replaced, and the collected data were downloaded and reorganized. The data set was processed by forming a time continuous sequence after the raw data were quality-controlled. It met the accuracy level of the original meteorological observation data of the National Weather Service and the World Meteorological Organization (WMO). The quality control included the elimination of the missing data and the systematic error caused by the failure of the sensor.
HU Zeyong
Photosynthetic effective radiation absorption coefficient photosynthetically active radiation component is an important biophysical parameter. It is an important land characteristic parameter of ecosystem function model, crop growth model, net primary productivity model, atmosphere model, biogeochemical model and ecological model, and is an ideal parameter for estimating vegetation biomass. The data set contains the data of photosynthetically active radiation absorption coefficient in Qinghai Tibet Plateau, with spatial resolution of 500m, temporal resolution of 8D, and time coverage of 2000, 2005, 2010 and 2015. The data source is MODIS Lai / FPAR product data mod15a2h (C6) on NASA website. The data are of great significance to the analysis of vegetation ecological environment in the Qinghai Tibet Plateau.
FANG Huajun, Ranga Myneni
This data set includes meteorological data observed by the carbon flux station in the Guoluo Army Ranch in Qinghai. The temporal coverage is from 2005 to 2009, and the temporal resolution is 1 day. Meteorological and carbon flux data observation methods: vorticity-related observation instruments were used for automatic recording; biomass observation method: harvest method, weighing in a 60-degree oven for 48 hours. Both carbon flux and meteorological data were automatically recorded by the instruments and manually checked. During the data observation process, the operation of the instrument and the selection of the observation objects were in strict accordance with professional requirements, and the data could be applied to plant leaf photosynthetic parameter simulation and productivity estimation. This data contains observation items as follows: Temperature °C Precipitation mm Wind speed m/s Soil temperature at 5 cm depth °C Photosynthetically active radiation µmol/m²s Total radiation W/m²
ZHAO Xinquan
This data set includes the monthly average actual evapotranspiration of the Tibet Plateau from 2001 to 2018. The data set is based on the satellite remote sensing data (MODIS) and reanalysis meteorological data (CMFD), and is calculated by the surface energy balance system model (SEBS). In the process of calculating the turbulent flux, the sub-grid scale topography drag parameterization scheme is introduced to improve the simulation of sensible and latent heat fluxes. In addition, the evapotranspiration of the model is verified by the observation data of six turbulence flux stations on the Tibetan Plateau, which shows high accuracy. The data set can be used to study the characteristics of land-atmosphere interaction and the water cycle in the Tibetan Plateau.
HAN Cunbo, MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang*, CHEN Xuelong, SU Zhongbo
This data set is a national high-resolution solar radiation data set covering 34 years (1983.7-2017.6), with a resolution of 10 km. The data unit is W / m2. The data set is developed by merging the global high-resolution (3 hours, 10 km) surface solar radiation data set (1983-2017) with isccp-hxg cloud products as the main input, with ground based sunshine duration derived surface solar raidation data from 2261 meteorological stations in China by using the geographic weighted regression method. The validation results show that this dataset can provide more accurate simulation of long-term variability of surface solar radiation than that of gewex-srb, cmsaf-clara-a2 and the isccp-hxg based surface solar radiation product. This data can provide favorable data support for the application and research of long-term change of hydrology in land surface process simulation.
FENG Fei, WANG Kaicun
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.
Felix Nieberding, MA Yaoming, Cristian Wille, Gerardo Fratini, Magnus Ole Asmussen, Yuyang Wang*, MA Weiqiang*, Torsten Sachs
Terrestrial actual evapotranspiration (ETa) is an important component of terrestrial ecosystems because it links the hydrological, energy, and carbon cycles. However, accurately monitoring and understanding the spatial and temporal variability of ETa over the Tibetan Plateau (TP) remains very difficult. Here, the multiyear (2000-2018) monthly ETa on the TP was estimated using the MOD16-STM model supported by datasets of soil properties, meteorological conditions, and remote sensing. The estimated ETa correlates very well with measurements from 9 flux towers, with low root mean square errors (average RMSE = 13.48 mm/month) and mean bias (average MB = 2.85 mm/month), and strong correlation coefficients (R = 0.88) and the index of agreement values (IOA = 0.92). The spatially averaged ETa of the entire TP and the eastern TP (Lon > 90°E) increased significantly, at rates of 1.34 mm/year (p < 0.05) and 2.84 mm/year (p < 0.05) from 2000 to 2018, while no pronounced trend was detected on the western TP (Lon < 90°E). The spatial distribution of ETa and its components were heterogeneous, decreasing from the southeastern to northwestern TP. ETa showed a significantly increasing trend in the eastern TP, and a significant decreasing trend throughout the year in the southwestern TP, particularly in winter and spring. Soil evaporation (Es) accounted for more than 84% of ETa and the spatial distribution of temporal trends was similar to that of ETa over the TP. The amplitudes and rates of variations in ETa were greatest in spring and summer. The multi-year averaged annual terrestrial ETa (over an area of 2444.18×103 km2) was 376.91±13.13 mm/year, equivalent to a volume of 976.52±35.7 km3/year. The average annual evapotranspirated water volume over the whole TP (including all plateau lakes, with an area of 2539.49×103 km2) was about 1028.22±37.8 km3/year. This new estimated ETa dataset is useful for investigating the hydrological impacts of land cover change and will help with better management of watershed water resources across the TP.
MA Yaoming, CHEN Xuelong,
Central Asia (referred to as CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need of high-resolution climate projection datasets for application to vulnerability, impacts, and adaption assessments. We applied three bias-corrected global climate models (GCMs) to conduct 9-km resolution dynamical downscaling in CA. A high-resolution climate projection dataset over CA (the HCPD-CA dataset) is derived from the downscaled results, which contains four static variables and ten meteorological elements that are widely used to drive ecological and hydrological models. The static variables are terrain height (HGT, m), land use category (LU_INDEX, 21 categories), land mask (LANDMASK, 1 for land and 0 for water), and soil category (ISLTYP, 16 categories). The meteorological elements are daily precipitation (PREC, mm/day), daily mean/maximum/minimum temperature at 2m (T2MEAN/T2MAX/T2MIN, K), daily mean relative humidity at 2m (RH2MEAN, %), daily mean eastward and northward wind at 10m (U10MEAN/V10MEAN, m/s), daily mean downward shortwave/longwave flux at surface (SWD/LWD, W/m2), and daily mean surface pressure (PSFC, Pa). The reference and future periods are 1986-2005 and 2031-2050, respectively. The carbon emission scenario is RCP4.5. The results show the data product has good quality in describing the climatology of all the elements in CA, which ensures the suitability of the dataset for future research. The main feature of projected climate changes in CA in the near-term future is strong warming (annual mean temperature increasing by 1.62-2.02℃) and significant increase in downward shortwave and longwave flux at surface, with minor changes in other elements. The HCPD-CA dataset presented here serves as a scientific basis for assessing the impacts of climate change over CA on many sectors, especially on ecological and hydrological systems.
QIU Yuan QIU Yuan
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn