The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.
YANG Kun, HE Jie, WENJUN TANG , LU Hui, QIN Jun , CHEN Yingying, LI Xin
The data is based on the Harmonized World Soil Database version 1.1 (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). The data source of China is 1: 1 million soil data in the second national land survey provided by the Nanjing Soil Research Institute. The data can provide model input parameters for modelers, in agricultural perspective, it can be used to study eco-agricultural zoning, food security and climate change. The data format is grid and the projection is WGS84. The soil classification system used is mainly FAO-90. The main fields of the soil property table include: SU_SYM90 (the soil name in the FAO90 soil classification system); SU_SYM85 (FAO85 classification); T_TEXTURE (top soil texture); DRAINAGE (19.5); REF_DEPTH (soil reference depth); AWC_CLASS (19.5); AWC_CLASS (soil effective water content); PHASE1: Real (soil phase); PHASE2: String (soil phase); ROOTS: String (depth classification with obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of clay soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm). For the meaning of specific attribute values, please refer to the documentation * .pdf and database * .mdb in the folder.
Food and Agriculture Organization of the United Nations(FAO), International Institute for Applied Systems Analysis
This dataset is the monthly precipitation data of China, with a spatial resolution of 0.0083333 ° (about 1km) and a time range of 1901.1-2021.12. The data format is NETCDF, i.e.. Nc format. This dataset is generated in China through the Delta spatial downscaling scheme based on the global 0.5 ° climate dataset released by CRU and the global high-resolution climate dataset released by WorldClim. In addition, 496 independent meteorological observation point data are used for verification, and the verification results are reliable. This data set covers the main land areas in China (including Hong Kong, Macao and Taiwan), excluding islands and reefs in the South China Sea. In order to facilitate storage, the data are all int16 type and stored in nc files, with precipitation units of 0.1mm. NC data can be mapped using ArcMAP software; Matlab software can also be used for extraction processing. Matlab has released the function to read and store nc files. The read function is ncread, and switch to the nc file storage folder. The statement is expressed as: ncread ('XXX.nc ',' var ', [i j t], [leni lenj lent]), where XXX.nc is the file name, and is the string required' '; Var is from XXX The variable name read in NC. If it is a string, '' is required; i. J and t are the starting row, column and time of the read data respectively, and leni, lenj and lent i are the length of the read data in the row, column and time dimensions respectively. In this way, this function can be used to read in any region and any time period in the study area. There are many commands about NC data in the help of Matlab, which can be viewed. WGS84 is recommended for data coordinate system.
PENG Shouzhang
China's land cover data set includes 5 products: 1) glc2000_lucc_1km_China.asc, a Chinese subset of global land cover data based on SPOT4 remote sensing data developed by the GLC2000 project. The data name is GLC2000.GLC2000 China's regional land cover data is directly cropped from global cover data. For data description, please refer to http : //www-gvm.jrc.it/glc2000/defaultGLC2000.htm 2) igbp_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR remote sensing data supported by IGBP-DIS, the data name is IGBPDIS; IGBPDIS data was prepared using the USGS method, using April 1992 to March 1992 The AVHRR data developed global land cover data with a resolution of 1km. The classification system adopts a classification system developed by IGBP, which divides the world into 17 categories. Its development is based on continents. Applying AVHRR for 12 months to maximize synthetic NDVI data, 3) modis_lucc_1km_China_2001.asc, a subset of MODIS land cover data products in China, the data name is MODIS; MODIS China's regional land cover data is directly cropped from global cover data, and its data description please refer to http://edcdaac.usgs.gov/ modis / mod12q1v4.asp. 4. umd_lucc_1km_China.asc, a Chinese subset of global land cover data based on AVHRR data produced by the University of Maryland, the data name is UMd; the five bands of UMd based on AVHRR data and NDVI data are recombined to suggest a data matrix, using Methodology carried out global land cover classification. The goal is to create data that is more accurate than past data. The classification system largely adopts the classification scheme of IGBP. 5) westdc_lucc_1km_China.asc, China ’s 2000: 100,000 land cover data organized and implemented by the Chinese Academy of Sciences, combined with Yazashi conversion (the largest area method), and finally obtained a land use data product of 1km across the country, data name WESTDC. WESTDC China's regional land cover data is based on the results of a 1: 100,000 county-level land resource survey conducted by the Chinese Academy of Sciences. The land use data were merged and converted into a vector (the largest area method). The Chinese Academy of Sciences resource and environment classification system is adopted. 2: Data format: ArcView GIS ASCII 3: Mesh parameters: ncols 4857 nrows 4045 xllcorner -2650000 yllcorner 1876946 cellsize 1000 NODATA_value -9999 4: Projection parameters: Projection ALBERS Units METERS Spheroid Krasovsky Parameters: 25 00 0.000 / * 1st standard parallel 47 00 0.000 / * 2nd standard parallel 105 00 0.000 / * central meridian 0 0 0.000 / * latitude of projection's origin 0.00000 / * false easting (meters) 0.00000 / * false northing (meters)
RAN Youhua
The dataset of spectral reflectance observations was obtained by ASD (Analytical Sepctral Devices) in the Yingke oasis and Huazhaizi desert steppe foci experimental areas. Reflectance was calculated based on the equation R = (DN1/DN0)×R0, DN1 indicating DN of the targets, R0 and DN0 the reflectance and DN of the grey board. The reflectance spectra of maize and wheat canopy, the component leaf of the maize and BRDF in Yingke oasis maize field, Yingke oasis wheat field, Huazhaizi desert maize field, the transect spectrum in Huazhaizi desert No. 1 and 2 plots and Linze and Biandukou foci experimental area were measured on May 20, 24, 25, 28 and 30, Jun. 1, 4, 9, 14, 16, 18, 20, 22, 23, 24, 26, 29 and 30, Jul. 1, 4, 5, 6, 7, 9 and 11, 2008. Four ASD devices were used, from Peking University (350-2500nm), Institute of Remote Sensing Applications (350-2500nm), Beijing Academy of Agriculture and Forestry Sciences (350-1065nm) and BNU respectively. The reference boards were 40%, 50% and 99%. The above spectral reflectance dataset was synchronizing with WiDAS (Wide-angle Infrared Dual-mode line/area Array Scanner), OMIS-II and various spaceborne sensors. Raw data were binary files direct from ASD (by ViewSpecPro), and pre-processed data on reflectance were in Excel format.
CHEN Ling, REN Huazhong, WANG Haoxing, XIAO Yueting, YAN Guangkuo, ZHOU Hongmin, GE Yingchun, LI Xin, SHU Lele, GUANG Jie, LIU Sihan, SU Gaoli, XIA Chuanfu, Wen Jianguang, ZHANG Yang, ZHOU Chunyan, FAN Wenjie, TAO Xin, YAN Binyan, YAO Yanjuan, YANG Guijun, CHENG Zhanhui, Liu Liangyun, YANG Tianfu
This data is the water level data of 2011-2012, which is observed by water level recorder. From July 14 to September 9, 2011, the observation was recordered every five minutes; from June 4 to July 10, 2012, the observation was recordered every ten minutes. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. The data shall be opened with HOBO software.
ZHAO Chuanyan, MA Wenying
GIMMS (glaobal inventory modelling and mapping studies) NDVI data is the latest global vegetation index change data released by NASA C-J-Tucker and others in November 2003. The dataset includes the global vegetation index changes from 1981 to 2006, the format is ENVI standard format, the projection is ALBERS, and its time resolution is 15 days and its spatial resolution is 8km. GIMMS NDVI data recorded the changes of vegetation in 22a area in the format of satellite data. 1. File format: The GIMMS-NDVI dataset contains all rar compressed files with a 15-day interval from July 1981 to 2006. After decompression, it includes an XML file, an .HDR header file, an .IMG file, and a .JPG image file. 2. File naming: The naming rules for compressed files in the NOAA / AVHRR-NDVI data set are: YYMMM15a (b) .n **-VIg_data_envi.rar, where YY-year, MMM-abbreviated English month letters, 15a-synthesized in the first half of the month, 15b-synthesized in the second half of the month, **-Satellite. After decompression, there are 4 files with the same file name, and the attributes are: XML document, header file (suffix: .HDF), remote sensing image file (suffix: .IMG), and JPEG image file. In this data set, the user uses the remote sensing image file with the suffix .IMG to analyze the vegetation index. Remote sensing image files with suffix of .IMG and .HDF used by users to analyze vegetation indices can be opened in ENVI and ERDAS software. 3. The data header file information is as follows: Coordinate System is: PROJECTION ["Albers_Conic_Equal_Area"], PARAMETER ["standard_parallel_1", 25], PARAMETER ["standard_parallel_2", 47], PARAMETER ["latitude_of_center", 0], PARAMETER ["longitude_of_center", 105], PARAMETER ["false_easting", 0], PARAMETER ["false_northing", 0], UNIT ["Meter", 1]] Pixel Size = (8000.000000000000000, -8000.000000000000000) Corner Coordinates: Upper Left (-3922260.739, 6100362.950) (51d20'23.06 "E, 46d21'21.43" N) Lower Left (-3922260.739, 1540362.950) (71d16'1.22 "E, 8d41'42.21" N) Upper Right (3277739.261, 6100362.950) (151d 8'57.22 "E, 49d 9'35.37" N) Lower Right (3277739.261, 1540362.950) (133d30'58.46 "E, 10d37'13.35" N) Center (-322260.739, 3820362.950) (101d22'21.08 "E, 35d42'18.02" N) Band 1 Block = 900x1 Type = Int16, ColorInterp = Undefined Computed Min / Max = -16066.000,11231.000 4. Conversion relationship between DN value and NDVI NDVI = DN / 1000, divided by 10000 after 2003 The NDVI value should be between [-1,1]. Data outside this interval represent other features, such as water bodies.
Tucker, C.J., J.E.Pinzon, M.E.Brown
The Chinese regional surface meteorological element data set is a set of near-surface meteorological and environmental element reanalysis data set developed by the Qinghai-Tibet Plateau Research Institute of the Chinese Academy of Sciences. The data set is based on the existing Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation data and TRMM precipitation data in the world, and is made by combining the conventional meteorological observation data of China Meteorological Administration. The temporal resolution is 3 hours and the horizontal spatial resolution is 0.1, including 7 factors (variables) including near-surface air temperature, near-surface air pressure, near-surface air specific humidity, near-surface full wind speed, ground downward short wave radiation, ground downward long wave radiation and ground precipitation rate. The physical meaning of each variable: | Meteorological Element || Variable Name || Unit || Physical Meaning | near-surface temperature ||temp|| K || instantaneous near-surface (2m) temperature | surface pressure || pres|| Pa || instantaneous surface pressure | specific humidity of near-surface air || shum || kg/ kg || instantaneous specific humidity of near-surface air | near ground full wind speed || wind || m /s || instantaneous near ground (anemometer height) full wind speed | downward short wave radiation || srad || W/m2 || 3-hour average (-1.5 HR ~+1.5 HR) downward short wave radiation | Downward Long Wave Radiation ||lrad ||W/m2 ||3-hour Average (-1.5 hr ~+1.5 hr) Downward Long Wave Radiation | precipitation rate ||prec||mm/hr ||3-hour average (-3.0 HR ~ 0.0 HR) precipitation rate For more information, please refer to the "User's Guide for China Meteorological Al Forcing Dataset" published with the data. The main changes in the latest version (01.06.0014) are: 1. Extend the data to December 2015 (except for short-wave and long-wave data, only until October 2015; the data from November to December 2015 are interpolated based on GLDAS data, and the error may be too large); 2. Set the minimum wind speed at 0.05 m/s; 3. Fixed a bug in the previous radiation algorithm to make our short wave and long wave data more reasonable in the morning and evening periods. 4. bug of precipitation data has been corrected, and the period involved in the change is 2011-2015.
YANG Kun, HE Jie
China's second glacier inventory uses the high-resolution Landsat TM/ETM+ remote sensing satellite data as the main glacier boundary data source and extracts the data source with the latest global digital elevation model, SRTM V4, as the glacier attribute, using the current international ratio threshold segmentation method to extract the glacier boundary in bare ice areas. The ice ridge extraction algorithm is developed to extract the glacier ice ridge, and it is used for the segmentation of a single glacier. At the same time, the international general algorithm is used to calculate the glacier attributes, so that the vector data and attribute data that contain the glacier information of the main glacier regions in west China are obtained. Compared with some field GPS field measurement data and higher resolution remote sensing images (such as from QuickBird and WorldView), the glacial vector data in the second glacier inventory data set of China have higher positioning accuracy and can meet the requirements for glacial data in national land, water conservancy, transportation, environment and other fields. Glacier inventory attributes: Glc_Name, Drng_Code, FCGI_ID, GLIMS_ID, Mtn_Name, Pref_Name, Glc_Long, Glc_Lati, Glc_Area, Abs_Accu, Rel_Accu, Deb_Area, Deb_A_Accu, Deb_R_Accu, Glc_Vol_A, Glc_Vol_B, Max_Elev, Min_Elev, Mean_Elev, MA_Elev, Mean_Slp, Mean_Asp, Prm_Image, Aux_Image, Rep_Date, Elev_Src, Elev_Date, Compiler, Verifier. For a detailed data description, please refer to the second glacier inventory data description.
LIU Shiyin, GUO Wanqin, XU Junli
Data of four hydrogeological boreholes constructed in the badain jaran desert area of alxa right banner in 2013 are provided, including borehole construction reports, borehole location plans and borehole profiles.Adopt the core of quaternary and bedrock, install the filter tube at the bottom of the well, wash the well. Quantity of work: 4 boreholes with Numbers of K1, K2, K3 and K4.The total footage is designed according to 240 m, with an average single hole depth of 60 m. The actual depth control standard is the exposure of bedrock.
WANG Xusheng, HU Xiaonong
The VEGETATION sensor sponsored by the European Commission was launched by SPOT-4 in March 1998. Since April 1998, SPOTVGT data for global vegetation coverage observation has been received by Kiruna ground station in Sweden. The image quality monitoring center in Toulouse, France is responsible for image quality and provides relevant parameters (such as calibration coefficient). Finally, the Belgian flemish institute for technological research (Vito)VEGETATION processing Centre (CTIV) is responsible for preprocessing into global data of 1km per day. Pretreatment includes atmospheric correction, radiation correction, geometric correction, production of 10 days to maximize the synthesized NDVI data, setting the value of -1 to -0.1 to -0.1, and then converting to the DN value of 0-250 through the formula DN=(NDVI+0.1)/0.004. The data set is a subset extraction from China, including spectral reflectance of four bands synthesized every 10 days and 10 days' maximum NDVI. It is data from 1998 to 2007 with a spatial resolution of 1km and a temporal resolution of 10 days. File format: Hfr and img files. The file naming rule is: CHN _ NDV _ YYYMMDD, where YYYYMMDD is the date of the day represented by the file and is also the main identifier different from other files. The remote sensing image files with suffix. IMG and. HDF used by users to analyze vegetation index can be opened in ENVI and ERDAS software. Coordinate system and projection Plate_Carree (Lon/Lat) PROJ_CENTER_LON 0.000000 PROJ_CENTER_LAT 0.000000 PIXEL_SIZE_UNITS DEGREES/PIXEL PIXEL_SIZE_X 0.0089285714 PIXEL_SIZE_Y 0.0089285714 SEMI_AXIS_MAJ 6378137.000000 SEMI_AXIS_MIN 6356752.314000 UL_LON (DEG) 73.000000 UL_LAT (DEG) 54.000000 LR_LON (DEG) 135.500000 LR_LAT (DEG) 5.000000 Corner coordinates are: Corner Coordinates: Upper Left ( 69.9955357, 55.0044643) Lower Left ( 69.9955357, 14.9955358) Upper Right ( 137.0044641, 55.0044643) Lower Right ( 137.0044641, 14.9955358) Where Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner.
Greet Janssens, Food and Agriculture Organization of the United Nations(FAO)
Soil data is important both on a global scale and on a local scale, and due to the lack of reliable soil data, land degradation assessments, environmental impact studies, and sustainable land management interventions have received significant bottlenecks . Affected by the urgent need for soil information data around the world, especially in the context of the Climate Change Convention, the International Institute for Applied Systems Analysis (IIASA) and the Food and Agriculture Organization of the United Nations (FAO) and the Kyoto Protocol for Soil Carbon Measurement and FAO/International The Global Agroecological Assessment Study (GAEZ v3.0) jointly established the Harmonized World Soil Database version 1.2 (HWSD V1.2). Among them, the data source in China is the second national land in 1995. Investigate 1:1,000,000 soil data provided by Nanjing Soil. The resolution is 30 seconds (about 0.083 degrees, 1km). The soil classification system used is mainly FAO-90. The core soil system unit unique verification identifier: MU_GLOBAL-HWSD database soil mapping unit identifier, connected to the GIS layer. MU_SOURCE1 and MU_SOURCE2 source database drawing unit identifiers SEQ-soil unit sequence in the composition of the soil mapping unit; The soil classification system utilizes the FAO-7 classification system or the FAO-90 classification system (SU_SYM74 resp. SU_SYM90) or FAO-85 (SU_SYM85). The main fields of the soil property sheet include: ID (database ID) MU_GLOBAL (Soil Unit Identifier) (Global) SU_SYMBOL soil drawing unit SU_SYM74 (FAO74 classification); SU_SYM85 (FAO85 classification); SU_SYM90 (name of soil in the FAO90 soil classification system); SU_CODE soil charting unit code SU_CODE74 soil unit name SU_CODE85 soil unit name SU_CODE90 soil unit name DRAINAGE (19.5); REF_DEPTH (soil reference depth); AWC_CLASS(19.5); AWC_CLASS (effective soil water content); PHASE1: Real (soil phase); PHASE2: String (soil phase); ROOTS: String (depth classification to the bottom of the soil); SWR: String (soil moisture content); ADD_PROP: Real (specific soil type in the soil unit related to agricultural use); T_TEXTURE (top soil texture); T_GRAVEL: Real (top gravel volume percentage); (unit: %vol.) T_SAND: Real (top sand content); (unit: % wt.) T_SILT: Real (surface layer sand content); (unit: % wt.) T_CLAY: Real (top clay content); (unit: % wt.) T_USDA_TEX: Real (top layer USDA soil texture classification); (unit: name) T_REF_BULK: Real (top soil bulk density); (unit: kg/dm3.) T_OC: Real (top organic carbon content); (unit: % weight) T_PH_H2O: Real (top pH) (unit: -log(H+)) T_CEC_CLAY: Real (cation exchange capacity of the top adhesive layer soil); (unit: cmol/kg) T_CEC_SOIL: Real (cation exchange capacity of top soil) (unit: cmol/kg) T_BS: Real (top level basic saturation); (unit: %) T_TEB: Real (top exchangeable base); (unit: cmol/kg) T_CACO3: Real (top carbonate or lime content) (unit: % weight) T_CASO4: Real (top sulfate content); (unit: % weight) T_ESP: Real (top exchangeable sodium salt); (unit: %) T_ECE: Real (top conductivity). (Unit: dS/m) S_GRAVEL: Real (bottom crushed stone volume percentage); (unit: %vol.) S_SAND: Real (bottom sand content); (unit: % wt.) S_SILT: Real (bottom sludge content); (unit: % wt.) S_CLAY: Real (bottom clay content); (unit: % wt.) S_USDA_TEX: Real (bottom USDA soil texture classification); (unit: name) S_REF_BULK: Real (bottom soil bulk density); (unit: kg/dm3.) S_OC: Real (underlying organic carbon content); (unit: % weight) S_PH_H2O: Real (bottom pH) (unit: -log(H+)) S_CEC_CLAY: Real (cation exchange capacity of the underlying adhesive layer soil); (unit: cmol/kg) S_CEC_SOIL: Real (cation exchange capacity of the bottom soil) (unit: cmol/kg) S_BS: Real (underlying basic saturation); (unit: %) S_TEB: Real (underlying exchangeable base); (unit: cmol/kg) S_CACO3: Real (bottom carbonate or lime content) (unit: % weight) S_CASO4: Real (bottom sulfate content); (unit: % weight) S_ESP: Real (underlying exchangeable sodium salt); (unit: %) S_ECE: Real (underlying conductivity). (Unit: dS/m) The database is divided into two layers, with the top layer (T) soil thickness (0-30 cm) and the bottom layer (S) soil thickness (30-100 cm). For other attribute values, please refer to the HWSD1.2_documentation documentation.pdf, The Harmonized World Soil Database (HWSD V1.2) Viewer-Chinese description and HWSD.mdb.
Meng Xianyong, Wang Hao
This dataset is the first 1: 100,000 desert spatial database in China based on the graphic data of desert thematic maps. It mainly reflects the geographical distribution, area size, and mobility of sand dunes in China. According to the system design requirements and relevant standards, the input data is standardized and uniformly converted into a standard format for various types of data input. Build a library to run the delivery system. This project uses the TM image in 2000 as the information source, and interprets, extracts, and edits the coverage of the national land use map and TM digital image information in 2000. It uses remote sensing and geographic information system technology to 1: 100,000 Thematic mapping requirements for scale bar maps were made on the desert, sandy land and gravel Gobi in China. The 1: 100,000 desert map across the country can save users a lot of data entry and editing work when they are engaged in research on resources and the environment. Digital maps can be easily converted into layout maps The dataset properties are as follows: Divided into two folders e00 and shp: Desert map name and province comparison table in each folder 01 Ahsm Anhui 02 Bjsm Beijing 03 Fjsm Fujian 04 Gdsm Guangdong 05 Gssm Gansu 06 Gxsm Guangxi Zhuang Autonomous Region 07 Gzsm Guizhou 08 Hebsm Hebei 09 Hensm Henan 10 Hljsm Heilongjiang 11 Hndsm Hainan 12 Hubsm Hubei 13 Jlsm Jilin Province 14 Jssm Jiangsu 15 Jxsm Jiangxi 16 Lnsm Liaoning 17 Nmsm Inner Mongolia Gu Autonomous Region 18 Nxsm Ningxia Hui Autonomous Region 19 Qhsm Qinghai 20 Scsm Sichuan 21 Sdsm Shandong 22 Sxsm Shaanxi Province 23 Tjsm Tianjin 24 Twsm Taiwan Province 25 Xjsm Xinjiang Uygur Autonomous Region 26 Xzsm Tibet Autonomous Region 27 Zjsm Zhejiang 28 Shxsm Shanxi 1. Data projection: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2. Data attribute table: area (area) perimeter ashm_ (sequence code) class (desert encoding) ashm_id (desert encoding) 3. Desert coding: mobile sandy land 2341010 Semi-mobile sandy land Semi-fixed sandy land 2341030 Gobi 2342000 Saline land 2343000 4: File format: National, sub-provincial and county-level desert map data types are vector shapefiles and E00 5: File naming: Data organization based on the National Basic Resources and Environmental Remote Sensing Dynamic Information Service System is performed on the file management layer of Windows NT. The file and directory names are compound names of English characters and numbers. Pinyin + SM composition, such as the desert map of Gansu Province is GSSM. The flag and county desert map is the pinyin + xxxx of the province name, and xxxx is the last four digits of the flag and county code. The division of provinces, districts, flags and counties is based on the administrative division data files in the national basic resources and environmental remote sensing dynamic information service operation system.
WANG Jianhua, WANG Yimou, YAN Changzhen, QI Yuan
The dataset is a nearly 36-year (1983.7-2018.12) high-resolution (3 h, 10 km) global SSR (surface solar radiation) dataset, which can be used for hydrological modeling, land surface modeling and engineering application. The dataset was produced based on ISCCP-HXG cloud products, ERA5 reanalysis data, and MODIS aerosol and albedo products with an improved physical parameterization scheme. Validation and comparisons with other global satellite radiation products indicate that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). This SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The unit is W/㎡, instantaneous value.
TANG Wenjun
DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system
TANG Guoan
CMADS V1.1(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.1) Version of the data set introduced the STMAS assimilation algorithm. It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature (2m), air pressure, humidity, and wind speed data (10m) was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature (2m), average pressure, maximum and minimum temperature (2m), specific humidity, cumulative precipitation, and average wind speed (10m). The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder): Daily Average Temperature (2m), Daily Maximum Temperature (2m), Daily Minimum Temperature (2m), Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind (10m), and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0 For-swat --specifically driving the SWAT model 2.CMADS-V1.0 For-other-model --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS-- For-swat-2009 folder contain:(Station and Fork ) 1).Station Relative-Humidity-58500 Daily average relative humidity(fraction) Precipitation-58500 Daily accumulated 24-hour precipitation(mm) Solar radiation-58500 Daily average solar radiation(MJ/m2) Tmperature-58500 Daily maximum and minimum 2m temperature(℃) Wind-58500 Daily average 10m wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS-- For-swat-2012 folder contain:(Station and Fork ) Storage structure is consistency with For-swat- 2009 .However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3) For-other-model (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt Daily average atmospheric pressure(hPa) Average-Temperature-txt Daily average 2m temperature(℃) Maximum-Temperature-txt Daily maximum 2m temperature(℃) Minimum-Temperature-txt Daily minimum 2m temperature(℃) Precipitation-txt Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt Daily average relative humidity(fraction) Solar-Radiation-txt Daily average solar radiation(MJ/m2) Specific-Humidity-txt Daily average Specific Humidity(g/kg) Wind-txt Daily average 10m wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data:45GB Occupied space: 50GB Time: From year 2008 to year 2014 Time resolution: Daily Geographical scope description: East Asia Longitude: 60° E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None
Meng Xianyong, Wang Hao
This dataset (version 1.5) is derived from the complementary-relationship method, with inputs of CMFD downward short- and long-wave radiation, air temperature, air pressure, GLASS albedo and broadband longwave emissivity, ERA5-land land surface temperature and humidity, and NCEP diffuse skylight ratio, etc. This dataset covers the period of 1982-2017, and the spatial coverage is Chinese land area. This dataset would be helpful for long-term hydrological cycle and climate change research. Land surface actual evapotranspiration (Ea),unit: mm month-1. The spatial resolution is 0.1-degree; The temporal resolution is monthly; The data type is NetCDF; This evapotranspiration dataset is only for land surface.
MA Ning, MA Ning, Jozsef Szilagyi, ZHANG Yinsheng, LIU Wenbin
The SRTM sensor has two bands, namely C-band and X-band. The SRTM we are using now comes from the C-band. The publicly released SRTM digital elevation products include DEM data at three different resolutions: * SRTM1 covers only the continental United States, with a spatial resolution of 1s; * SRTM3 data covers the world with a spatial resolution of 3s. This is the most widely used dataset. The elevation reference of SRTM3 is the geoid of EGM96 and the horizontal reference is WGS84. The nominal absolute elevation accuracy is ± 16m, and the absolute plane accuracy is ± 20m. * SRTM30 data also covers the world, with a resolution of 30s. There are multiple versions of SRTM data. The early SRTM data was completed by NASA's "JPL" (Jet Propulsion Laboratory) ground data processing system (GDPS). The data is called SRTM3- 1. The National Geospatial Intelligence Agency has further processed the data, and the lack of data has been significantly improved. The data is called SRTM3-2. This dataset is mainly the fourth version of SRTM terrain data obtained by CIAT (International Center for Tropical Agriculture) using a new interpolation algorithm. This method better fills the SRTM 90 data hole. The interpolation algorithm comes from Reuter et al. (2007). The data of SRTM is organized as follows: every 5 latitude and longitude grids is divided into a file, which are divided into 24 rows (-60 to 60 degrees) and 72 columns (-180 to 180 degrees). The file naming rule is srtm_XX_YY.zip, where XX indicates the number of columns (01-72), and YY indicates the number of rows (01-24). The resolution of the data is 90 m. Data use: SRTM data uses a 16-bit value to represent the elevation value (-/ + / 32767 meters), the maximum positive elevation is 9000 meters, and the negative elevation (12,000 meters below sea level). -32767 standard for empty data.
CGIAR-CSI
The dataset includes soil physical and chemical attributes: pH value, organic matter fraction, cation exchange capacity, root abundance, total nitrogen (N), total phosphorus (P), total potassium (K), alkali-hydrolysable N, available P, available K, exchangeable H+, Al3+, Ca2+, Mg2+, K+ , Na+, horizon thickness, soil profile depth, sand, silt and clay fractions, rock fragment, bulk density, porosity, structure, consistency and soil color. Quality control information (QC) was provided. The resolution is 30 arc-seconds (about 1 km at the equator). The vertical variation of soil property was captured by eight layers to the depth of 2.3 m (i.e. 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 0.829- 1.383 and 1.383- 2.296 m) for convenience of use in the Common Land Model and the Community Land Model (CLM). 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
DAI Yongjiu, SHANGGUAN Wei
CMADS V1.0(The China Meteorological Assimilation Driving Datasets for the SWAT model Version 1.0)Version of the data set introduces the technology of STMAS assimilation algorithm . It was constructed using multiple technologies and scientific methods, including loop nesting of data, projection of resampling models, and bilinear interpolation. The CMADS series of datasets can be used to drive various hydrological models, such as SWAT, the Variable Infiltration Capacity (VIC) model, and the Storm Water Management model (SWMM). It also allows users to conveniently extract a wide range of meteorological elements for detailed climatic analyses. Data sources for the CMADS series include nearly 40,000 regional automatic stations under China’s 2,421 national automatic and business assessment centres. This ensures that the CMADS datasets have wide applicability within the country, and that data accuracy was vastly improved. The CMADS series of datasets has undergone finishing and correction to match the specific format of input and driving data of SWAT models. This reduces the volume of complex work that model builders have to deal with. An index table of the various elements encompassing all of East Asia was also established for SWAT models. This allows the models to utilize the datasets directly, thus eliminating the need for any format conversion or calculations using weather generators. Consequently, significant improvements to the modelling speed and output accuracy of SWAT models were achieved. Most of the source data in the CMADS datasets are derived from CLDAS in China and other reanalysis data in the world. The integration of air temperature, air pressure, humidity, and wind velocity data was mainly achieved through the LAPS/STMAS system. Precipitation data were stitched using CMORPH’s global precipitation products and the National Meteorological Information Center’s data of China (which is based on CMORPH’s integrated precipitation products). The latter contains daily precipitation records observed at 2,400 national meteorological stations and the CMORPH satellite’s inversion precipitation products.The inversion algorithm for incoming solar radiation at the ground surface makes use of the discrete longitudinal method by Stamnes et al.(1988)to calculate radiation transmission. The resolutions for CMADS V1.0, V1.1, V1.2, and V1.3 were 1/3°, 1/4°, 1/8°, and 1/16°, respectively. In CMADS V1.0 (at a spatial resolution of 1/3°), East Asia was spatially divided into 195 × 300 grid points containing 58,500 stations. Despite being at the same spatial resolution as CMADS V1.0, CMADS V1.1 contains more data, with 260 × 400 grid points containing 104,000 stations. For both versions, the stations’ daily data include average solar radiation, average temperature, average pressure, maximum and minimum temperature, specific humidity, cumulative precipitation, and average wind velocity. The CMADS comprises other variables for any hydrological model(under 'For-other-model' folder ): Daily Average Temperature, Daily Maximum Temperature, Daily Minimum Temperature, Daily cumulative precipitation (20-20h), Daily average Relative Humidity, Daily average Specific Humidity, Daily average Solar Radiation, Daily average Wind, and Daily average Atmospheric Pressure. Introduction to metadata of CMADS CMADS storage path description:(CMADS was divided into two datesets) 1.CMADS-V1.0\For-swat\ --specifically driving the SWAT model 2.CMADS-V1.0\For-other-model\ --specifically driving the other hydrological model(VIC,SWMM,etc.) CMADS--\For-swat-2009\ folder contain:(Station\ and Fork\) 1).Station\ Relative-Humidity-58500\ Daily average relative humidity(fraction) Precipitation-58500\ Daily accumulated 24-hour precipitation(mm) Solar radiation-58500\ Daily average solar radiation(MJ/m2) Tmperature-58500\ Daily maximum and minimum temperature(℃) Wind-58500\ Daily average wind speed(m/s) Where R, P, S, T, W+ dimensional grid number - the number of longitude grid is the station in the above five folders respectively.(Where R,P,S,T,W respective Daily average relative humidity,Daily cumulative precipitation(24h),Daily mean solar radiation(MJ/m2),Daily maximum and minimum temperature(℃) and Daily mean wind speed (m/s)) respectively.Data format is (.dbf) 2).Fork\ (Station index table over East Asia) PCPFORK.txt (Precipitation index table) RHFORK.txt (Relative humidity index table) SORFORK.txt (Solar radiation index table) TMPFORK.txt (Temperature index table) WINDFORK.txt (Wind speed index) CMADS--\For-swat-2012\ folder contain:(Station\ and Fork\) Storage structure is consistency with \For-swat- 2009\.However, all the data in this directory are only available in TXT format and can be readed by SWAT2012. 3)\For-other-model\ (Includes all weather input data required by the any hydrologic model (daily).) Atmospheric-Pressure-txt\ Daily average atmospheric pressure(hPa) Average-Temperature-txt\ Daily average temperature(℃) Maximum-Temperature-txt\ Daily maximum temperature(℃) Minimum-Temperature-txt\ Daily minimum temperature(℃) Precipitation-txt\ Daily accumulated 24-hour precipitation (mm) Relative-Humidity-txt\ Daily average relative humidity(fraction) Solar-Radiation-txt\ Daily average solar radiation(MJ/m2) Specific-Humidity-txt\ Daily average Specific Humidity(g/kg) Wind-txt\ Daily average wind speed(m/s) Data storage information: data set storage format is .dbf and .txt Other data information: Total data: 33.6GB Occupied space: 35.2GB Time: From year 2008 to year 2016 Time resolution: Daily Geographical scope description: East Asia Longitude: 60°E The most east longitude: 160°E North latitude: 65°N Most southern latitude: 0°N Number of stations: 58500 stations Spatial resolution: 1/3 * 1/3 * grid points Vertical range: None
Meng Xianyong, Wang Hao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn