Data content: foreign economy and trade_ Total import and export of goods (1991-2021) Data source and processing method: The original data of foreign trade and investment of the third pole (China region) from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the data set of foreign trade and investment of the third pole (China region) from 1991 to 2021 was obtained through data sorting, screening and cleaning. The data started from 1991 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
FU Wenxue
This phenological data is based on the MOD13A2 data of the Qinghai Tibet Plateau from 2000 to 2015 (with a temporal resolution of 16 days and a spatial resolution of 1km). The NDVI curve is fitted using the segmented Gaussian function in the TIMESAT software. The spring phenology, autumn phenology and the length of the growth season are extracted using the dynamic threshold method. The thresholds of spring phenology and autumn phenology are set to 0.2 and 0.7 respectively. The phenological data were masked. Among them, the mask rules are: 1) The maximum value of NDVI must be met between June and September; 2) The average value of NDVI from June to September shall not be less than 0.2; 3) The average NDVI in winter shall not exceed 0.3.
ZU Jiaxing , ZHANG Yangjian
This data set is the global vegetation productivity data, including total primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP). It is simulated by BCC-ESM1 model in Phase 6 of the Coupling Model Comparison Plan (CMIP6) under the historical scenario. The data time range is 1850-2014, the time resolution is month, and the spatial resolution is about 2.8125 °. Analog Data Details Visible Link https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.BCC.BCC -ESM1。
ZHENG Zhoutao
The feedback of the biosphere to the atmosphere is one of the core contents of global change research. When the atmospheric CO2 concentration rises, the behavior of the terrestrial ecosystem is the main uncertainty factor to predict this feedback effect. Elevated CO2 concentration (eCO2) can directly stimulate plant growth and ecosystem C absorption by increasing carboxylation and inhibiting photorespiration rate. Through the impact of CO2 fertilization effect (CFE) on photosynthesis and carbon sequestration, the terrestrial ecosystem can buffer the surge of atmospheric CO2 concentration, thereby slowing down climate change. In order to study the impact of CO2 enrichment on vegetation productivity, CO2 enrichment experiments were conducted at Naqu Grassland Station (31 ° 38 ′ 31 ″ N, 92 ° 00 ′ 54 ″ E, 4600m above sea level) in the north of the Qinghai Tibet Plateau. The test is designed in zones, with CO2 as the main treatment factor and N as the secondary treatment factor; A total of four experimental treatments span two CO2 concentration levels [ambient CO2 (aCO2), increased CO2 (eCO2):+100ppm]. Considering the low vegetation height and windy weather in the study area, octagonal open top chambers (OTCs) are used to control the carbon dioxide concentration, rather than the free FACE system. The design height of OTC is 2.5 meters, the length of each side is 1.5 meters, and each OTC occupies 7.7 square meters.
ZHANG Yangjian
This data set is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including ecosystem net ecosystem productivity (NEP), total primary productivity (GPP) and ecosystem respiration (ER) data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
Vegetation survey data is essential for the study of ecosystem structure and function. The Qinghai Tibet Plateau contains a vast grassland ecosystem, mainly including alpine meadow, alpine grassland, and alpine desertification grassland. Due to the unique geographical location and high altitude anoxic environmental conditions, the community survey data in the northern Tibetan Plateau is relatively scarce. This data set includes the aboveground biomass and coverage data of 47 sampling points on the northern Tibet transect in 2019, and the sampling time is from July to August. The sample size is 50cm × 50cm, dry weight of the plant is weighed after drying. This data set can be used for spatial analysis of productivity and calibration of models.
ZHANG Yangjian, ZHU Juntao
This dataset is the daily vorticity related flux observation data of Naqu flux station (31.64 ° N 92.01 ° E, 4598 m a.s.l.), including net ecosystem productivity (NEP), total primary productivity (GPP), ecosystem respiration (ER), evapotranspiration, latent heat, sensible heat, air temperature, relative humidity, wind speed, soil temperature, soil moisture and other data. The main steps of data pre-processing include wild point removal (± 3 σ)、 Coordinate axis rotation (3D wind rotation), Webb Pearman Leuning correction, outlier elimination, carbon flux interpolation and decomposition, etc. Missing data are interpolated through the nonlinear empirical formula between CO2 flux value (Fc) and environmental factors.
ZHANG Yangjian
This dataset is global respiration data, including autotrophic respiration (ra) and heterotrophic respiration (rh). It is simulated by TaiESM1 model in Phase 6 of the Coupling Model Comparison Plan (CMIP6) under historical scenarios. The data time range is 1850-2014, the time resolution is month, and the spatial resolution is about 0.9 ° x1.25 °. Analog Data Details Visible Link https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.AS -RCEC.TaiESM1.historical。
Program for Climate Model Diagnosis and Intercomparison (PCMDI)
CMIP6 is the sixth climate model comparison plan organized by the World Climate Research Program (WCRP). Original data from https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 。 This dataset contains four SSP scenarios of Scenario MIP in CMIP6. (1) SSP126: Upgrade of RCP2.6 scenario based on SSP1 (low forcing scenario) (radiation forcing will reach 2.6W/m2 in 2100). (2) SSP245: Upgrade of RCP4.5 scenario based on SSP2 (moderate forcing scenario) (radiation forcing will reach 4.5 W/m2 in 2100). (3) SSP370: New RCP7.0 emission path based on SSP3 (medium forcing scenario) (radiation forcing will reach 7.0 W/m2 in 2100). (4) SSP585: Upgrade the RCP8.5 scenario based on SSP5 (high forcing scenario) (SSP585 is the only SSP scenario that can make the radiation forcing reach 8.5 W/m2 in 2100). Using GRU data to correct the post-processing deviation of the original CMIP data, the post-processing data set of monthly precipitation (pr) and temperature (tas) estimates from 2046-2065 was obtained, with a reference period of 1985-2014.
YE Aizhong
The data set of ecological adjustment value of Arctic permafrost change from 1982 to 2015, with the time resolution of 1982, 2015 and the change rate of two phases, covers the entire Arctic tundra area, with the spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, and combined with GIS and ecological methods, it quantifies the adjustment service value of Arctic permafrost to the ecosystem, The unit price refers to the correlation (0.35) between the active layer thickness and NDVI changes after excluding precipitation and snow water equivalent, and the grassland ecosystem service value (the unit price of tundra ecosystem service is based on 1/3 of the grassland ecosystem service value).
WANG Shijin
The active layer thickness in the Wudaoliang permafrost region of the Qinghai Tibet Plateau is retrieved based on the seasonal deformation obtained by SBAS-InSAR technology and ERA5-Land spatio-temporal multi-layer soil moisture data corrected by variational mode decomposition method. The time range of the is 2017-2020, and the spatial resolution is 1km. This data can be used to study the change of the active layer thickness in the permafrost region of the Qinghai Tibet Plateau and analyze its interaction with climate change, water cycle and energy cycle. It is significance to understand the permafrost degradation, environment evolution and the impact of permafrost degradation on ecology and climate.
LU Ping , HAO Tong , LI Rongxing
The aerosol optical thickness data of the Arctic Alaska station is formed based on the observation data products of the US Department of Energy's atmospheric radiation observation program at the Arctic Alaska station. The data coverage time is from 1998 to 2020, the time resolution is hourly, the coverage site is the Arctic Alaska station, and the longitude and latitude coordinates are (71 ° 19 ′ 22.8 ″ N, 156 ° 36 ′ 32.4 ″ W). The observation data is obtained from the inversion of the radiation data observed by MFRSR instrument. The optical characteristic variable is aerosol optical thickness, and the observation inversion error range is about 15%. The data format is nc format.
ZHAO Chuanfeng
The triple pole aerosol type data product is an aerosol type result obtained through a series of data pre-processing, quality control, statistical analysis and comparative analysis processes by comprehensively using MEERA 2 assimilation data and active satellite CALIPSO products. The key of the aerosol type fusion algorithm is to judge the aerosol type of CALIPSO. During the data fusion of aerosol type, the final aerosol type data (12 types in total) and quality control results in the three polar regions are obtained according to the types and quality control of CALIPSO aerosol types and referring to MERRA 2 aerosol types. The data product fully considers the vertical and spatial distribution of aerosols, and has a high spatial resolution (0.625 ° × 0.5 °) and time resolution (month).
ZHAO Chuanfeng
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
YANG Bojin , HUANG Huabing , LIANG Shuang , LI Xinwu
Data content: Industrial added value of national economy (monthly) (2010-2021) Data source and processing method: obtain the original data of the third pole (China) industrial economy in 2010-2021 from the official website of the World Bank and Sina.com, and obtain the industrial economy data set in 2010-2021 (China) through data sorting, screening and cleaning. The data starts from 2010 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as social, industrial and economic data
FU Wenxue
The 0.1 º aerosol optical thickness dataset (also known as the "Poles AOD Collection 1.0" aerosol optical thickness (AOD) dataset) in the polar regions from 2000 to 2020 was produced by combining Merra-2 mode data and MODIS satellite sensor AOD. The data covers the period from 2000 to 2020, with a daily time resolution, covering the "tri polar" (Antarctic, Arctic and Qinghai Tibet Plateau) region, and a spatial resolution of 0.1 degree. The verification of the measured stations shows that the relative deviation of the data is within 35%, which can effectively improve the coverage and accuracy of AOD in the polar region.
GUANG Jie GUANG Jie
The Qinghai-Tibet Engineering Corridor runs from Golmud to Lhasa. It passes through the core region of the Qinghai-Tibet Plateau and is an important passage connecting the interior and Tibet. The active layer thickness (ALT) is not only an important index to study the thermal state of ground in permafrost region, but also a key factor to be considered in the construction of permafrost engineering. The core of GIPL1.0 is kudryavtesv method, which takes into account the thermophysical properties of snow cover, vegetation and different soil layers. However, Yin Guoan et al. found that compared with kudryavtesv method, the accuracy of TTOP model is higher, so they improved the model in combination with freezing / thawing index. Through verification of field monitoring data, it was found that the simulation error of ALT is less than 50cm. Therefore, the ALT in the Qinghai Tibet project corridor is simulated by using the improved GIPL1.0 model, and the future ALT under the ssp2-4.5 climate change scenario is predicted.
NIU Fujun
(1) Data content: the annual mean Northern Annular mode index and the Northern Annular mode index from 1500 to 2000; (2) Data source and processing method: this data is independently produced by the author. It is based on PAGES2k data set and reconstructed by machine learning model (random forest, extreme tree, Light GBM and catboost). (3) Data quality description: the data set has high consistency with multiple instrumental data during the observed period, and the reconstruction is better. The data can be used to study the change and mechanism of the main atmospheric circulation in the northern and southern hemispheres on multiple time scales (interannual, interdecadal and multidecadal).
YANG Jiao
We utilized 12 datasets covering the period 900–1999 CE, including two summer temperature gridded datasets from the Qinghai–Tibetan Plateau, two summer temperature series from the Arctic, a summer temperature gridded dataset from the Arctic, six global gridded annual temperature reconstruction datasets, and a last millennium reanalysis dataset with seasonal resolution. We used the optimal information extraction method to reconstruct the summer temperature anomalies in the Qinghai-Tibet Plateau and the Arctic over the past millennium (900–1999 CE) with annual resolution. The range of the Qinghai-Tibetan Plateau is 27°N–36°N, 77°E–106°E, and the range of the Arctic is 60°N–90°N. The reconstruction target is the summer (June–August) temperature anomalies (with respect to 1961–1990 CE period) in the instrumental CRUTEM4v dataset. The data can be used to study the mechanism of temperature variability in the Qinghai-Tibetan Plateau and Arctic over the past millennium.
SHI Feng
(1) Data content: data set of Antarctic sea ice extent (Northernmost Latitude of Sea Ice Edge (NLSIE) [°N]) in the past 200 years; (2) Data source and processing method: the data is generated based on the statistical model using six annual resolution proxies (ice core MSA, accumulation rate, etc.); (3) Data quality description: annual resolution; Areas: Indian and western Pacific sector of the Southern Ocean (50 ° – 150 ° E, indwpac), Ross Sea (160 ° E – 140 ° W, RS), Amundsen Sea (90 ° – 140 ° W, as), Bellingshausen Sea (50 ° – 90 ° W, BS), Weddell Sea (50 ° W – 20 ° E, WS); (4) It can be used to study the interdecadal variability of Antarctic sea ice.
YANG Jiao
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn