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We usually use ground-based solar radiation measurements to validate satellite-derived solar radiation products
from kilometer to grid scales. Questions such as, how large is the representativeness error of surface measurements
in the validation and how much of the product-measurement difference can be attributed to their inherent differing
spatial scales, cast doubts on the suitability of this direct validation approach. In this paper, we will investigate and
quantify the representativeness errors of point-scale ground-based measurements using the surface flux-
observation matrix from HiWATER (Li et al., 2013) and the solar radiation data retrieved from geostationary mete-
orological satellite (Huang, Li, Ma, & Li, 2016). The current study demonstrates that wildly fluctuating representa-
tiveness errors exist which are strongly contingent on the time and space scales of remote sensing products, as
well as instant atmospheric conditions. For example, for an area of 5 x 5 km? 1.4~8.1% of representativeness errors
are found from monthly to “instantaneous” timescales; while for an area of 1° x 1° grid 3.1~8.1% of representative-
ness errors are seen. Such scale-dependent representativeness errors offer some implications for validations of re-
mote sensing products. On timescales longer than or equal to one day, representativeness errors do not need to
be considered for validations of kilometer-level products, but on shorter timescales representativeness errors will
affect the validation results to some extent. For instantaneous products with 5 km resolution, our study indicates
over 13% of errors can be attributed to the inherent representativeness error, and 30-minute surface measurements
are recommended for a routine validation. However, for validations of grid-level products, representativeness errors
basically cannot be neglected regardless of timescales. The errors caused by the poor representativeness of surface
sites, likely significantly contribute to the large differences between measurements and products.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Monitoring surface radiation budget by remote sensing technique is
a very important use of satellite data. Especially for surface solar radia-
tion (SSR), the earliest studies can date back to the 60s of the last centu-
ry (Fritz, Rao, & Weinstein, 1964). Besides large and continuous spatio-
temporal coverage, another main advantage of the satellite remote
sensing technique over other approaches (e.g., discrete surface observa-
tion or reanalysis modelled products) is that it can accurately capture
the spatial distributions and dynamic changes of cloud, which is
regarded as a superior modulator of SSR (Forman & Margulis, 2009).
Up to now, over decades of rapid development, estimation of SSR
based on satellite remote sensing technique has become increasingly
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mature, and many products have already been produced (Liang,
Wang, Zhang, & Wild, 2010; Pinker & Laszlo, 1992; Pinker et al., 2003;
Posselt, Mueller, Stockli, & Trentmann, 2012; Zhang, Liang, Zhou, Wu,
& Zhao, 2014; Zhang, Rossow, Lacis, Oinas, & Mishchenko, 2004).
Approximately, these products can be separated into two classes:
1) kilometer-level or pixel-level products such as the SSR data (Posselt
et al,, 2012) from European Satellite Application Facility on Climate
Monitoring (CM SAF) and the downward surface shortwave radiation
data (Huang et al,, 2013; Zhang et al., 2014) from Global Land Surface
Satellite (GLASS); 2) grid-level products (it should be noted that
“grid” in the paper exclusively refers to larger geographic latitude-
longitude grids that are generally >0.25°) such as the surface radiation
budget data (Pinker & Laszlo, 1992) of Global Energy and Water Cycle
Experiment (GEWEX) and the flux data (Zhang et al., 2004) of Interna-
tional Satellite Cloud Climatology Project (ISCCP). The kilometer-level
products are typically derived from satellite top-of-atmosphere (TOA)
radiance or reflectance directly, and primary high spatial resolution is
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preserved; whereas the grid-level products are usually calculated either
using coarse satellite and reanalysis atmospheric data as the model in-
puts or through simply averaging higher spatial resolution products,
and mainly used for the studies of global water cycle and climate
change.

In general, the validation of products, whether at the kilometer-level
or grid-level, is conducted via a direct comparison of collocated esti-
mates from products with ground-based SSR measurements (Huang
et al.,, 2013; Sanchez-Lorenzo, Wild, & Trentmann, 2013; Yang, Koike,
Stackhouse, Mikovitz, & Cox, 2006; Yang et al., 2008). However, the spa-
tial nature of satellite remote sensing products and that of ground-
based measurements are totally different. Essentially, what kilometer-
level or pixel-level products provide are the areal retrieved values
over the footprints of satellite pixels; what grid-level products give are
the means within latitude-longitude grids; whereas ground-based mea-
surements are point-specific. They are three distinct spatial samplings
on surface radiation fields and embody the space attributes of
kilometer-scale, grid-scale, and point-scale, respectively. Such scale di-
versity poses the following question: how well do surface point mea-
surements represent the larger scale surrounding means characterized
by satellite remote sensing products? If the error originating from
their unique spatial sampling scales is defined as representativeness
error (Li, 2014), how large is it in the routine validation of remote sens-
ing products?

To our knowledge, an in-depth and comprehensive study on this
issue has not been performed to this date. Sporadic, related researches
mainly focus on discussions of sampling errors between the
kilometer-scale and the grid-scale spaces. For example, Li, Cribb, and
Chang (2005) used SSR retrieved from Geostationary Operational Envi-
ronmental Satellite (GOES) to mimic ground measurements and quan-
tify the sampling errors within grid-level surroundings; Hakuba,
Folini, Sanchez-Lorenzo, and Wild (2013) calculated the representative-
ness errors with respect to the standard 1° grid on climatological mean
conditions in Europe with the help of the SSR from CM SAF. Therefore, it
is necessary to thoroughly investigate and quantify the representative-
ness errors from the point-scale to the kilometer-scale, to the grid-scale.

A surface flux-observation matrix from the Multi-Scale Observation
Experiment on Evapotranspiration over heterogeneous land surface of
Heihe Watershed Allied Telemetry Experimental Research (HiWATER-
MUSOEXE) provided an opportunity for us to study and address this
issue (Li et al., 2013). HIWATER is a comprehensive ecohydrological ex-
periment within the framework of the Heihe Plan, which was launched
by the National Natural Science Foundation of China (NSFC) in 2010.
MUSOEXE is the first thematic experiment launched by HiWATER, and
the flux-observation matrix in the middle reach of the Heihe river
basin is the major content of MUSOEXE. Although this observation ma-
trix was initially designed to monitor the spatio-temporal variation of
evapotranspiration, dense multi-point radiation measurements can
also be used to derive representativeness errors of point-scale measure-
ments with respect to their kilometer-level surroundings. Similarly,
sampling errors from kilometer to grid scales can be obtained by
means of high resolution SSR satellite products (Hakuba et al.,, 2013; Li
et al., 2005). Furthermore, based on the above two types of errors, rep-
resentativeness errors of point-scale measurements within grid-level
domains can be quantified. By analyzing representativeness errors of
point-scale ground-based SSR measurements with respect to different
levels of areas (kilometer-level or grid-level), implications for the rou-
tine validation of remote sensing products are drawn and presented
finally.

2. Data
2.1. Ground-based observations

As mentioned earlier, surface observation data in this study are only
provided by the surface flux-observation matrix from HiWATER-

MUSOEXE (Li et al., 2013). This observation matrix includes 17 sets of
eddy covariance (EC) system and automatic meteorological station
and 4 pairs of large aperture scintillometer (LAS) systems, and covers
approximately 5 x 5 km? spatial area located in the midstream area of
Heihe river basin, northwest China. The experiment was carried out
from June to September 2012, and its purpose was to capture the vari-
ability of evapotranspiration over heterogeneous land surfaces (Liu
etal, 2011).

Solar radiation in HIWATER-MUSOEXE was observed with routine
meteorological parameters. The detailed distribution of meteorological
sites equipped with radiometers is presented in Fig. 1. In a ~5 x 5 km?
spatial area, 17 radiometers were installed and formed a dense radiation
observation matrix. Most of them were CNR1 and CNR4 manufactured
by Kipp & Zonen (Netherlands) except Sites 3, 15 and 16 (see Table 1
for details). At Sites 3 and 15 NRO1 radiometer (Hukseflux,
Netherlands) and PSP/PIR radiometer (Eppley, U.S.) were equipped re-
spectively, and at Site 16 the instrument is Q7 produced by REBS
(U.S.). Because only net radiation was output by Q7 radiometer, Site
16 was excluded. Among these radiometers, the pyranometer of PSP/
PIR belongs to the 1st class of the World Meteorological Organization
(WMO) classification, and the others can only be qualified as the 2nd
class of WMO classification. In order to identify and reduce the calibra-
tion error among instruments, an instrumental intercomparison test
was conducted over the Gobi desert between May 16 and 22, 2012
(Xu et al., 2013) before the matrix experiment. This test indicates
some pyranometers have relatively significant calibration error up to
~3%. Hence, with the PSP/PIR pyranometer as the reference, a series of
linear regression fits were performed to reduce the calibration error,
and the resulting regression equations in Table 1 would be used into
the practical field calibrations. After corrections, the discrepancy
among instruments is trivial, and the root mean squared deviation
(RMSD) all are <8 W/m? at 10-min timescale.

During the matrix experiment, all measurements were carried out
carefully with continuous supervision. Spirit levels and glass domes of
the 17 radiometers were checked weekly to guard against any percepti-
ble instrument tilting and possible soiling of the sensors. In spite of this,
compared to other routine meteorological parameters, the measure-
ments of surface radiation components are more prone to all kinds of er-
rors (Moradi, 2009). Before further work was proceeded with, a series of
error corrections need to be done firstly. Following the study of
Vuilleumier et al. (2014), a thermal offset correction, a calibration cor-
rection, a leveling correction and a correction on soiling error were ini-
tially devised to perform in order. Adopting the method suggested by
Dutton et al. (2001) the thermal offset error was first analyzed and
corrected for each radiometer separately. Next, the correction on cali-
bration error was conducted by using the linear regressions tabulated
in Table 1. By checking azimuth-wise irradiance in some typical clear
days (Menyhart, Anda, & Nagy, 2015), we found that most of the sites
were well-leveled and horizontal except Site 9. Site 9 may have very
slight tilt because the peak of interpolated azimuth-wise irradiance ap-
peared at the azimuth of 182° but not 180°. However, due to the limita-
tion of our observed data (direct beam radiation and diffuse radiation
were not measured independently in the experiment), it is very difficult
to find a valid approach to correct the leveling-induced error. As for the
soiling error, in view of our cautious maintenance, this kind of error
should be able to be avoided. That is, latter two kinds of corrections in
practice were not performed. The recording cycle of raw SSR was
10 min, and data gaps nearly did not exist during the experiment. The
corrected data at the 16 sites would be utilized for the following
analyses.

2.2. Satellite retrievals
Previous SSR satellite products (Huang et al., 2016) over Heihe river

basin in northwest China are used in the current study. The products
were based on the look-up table algorithm of Huang, Ma, Liang, Liu,
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Fig. 1. Distribution of meteorological sites equipped with a radiometer in the flux-observation matrix of HIWATER-MUSOEXE.
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and Li (2011), and the Japanese second generation geostationary mete-
orological satellite, Multifunctional Transport Satellite (MTSAT).

The original spatial resolution of the products is 0.05° (~5 km), and
the temporal resolution is half hour. A previous routine validation dem-
onstrated for instantaneous and hourly SSR a root mean squared devia-
tion of 93 W/m? and 88 W/m?, respectively; while for daily SSR it
further dropped to 34 W/m?2. All linear correlations between measure-
ments and products were higher than 0.9, and mean absolute deviations
were controlled within 18%. Such high resolution and accuracy can be
used to characterize the variability of SSR caused by clouds on the grid

100.40°E 100.45°E 100.50°E

scale. The graticules in Fig. 1 visually depict the actual spatial locations
of the collocated product pixels.

3. Methodology

Our primary purpose is investigating the representativeness errors
of point-scale ground-based SSR measurements with respect to
kilometer-level and grid-level surroundings. Concretely, for the
kilometer-level domain here 1 x 1 km? and 5 x 5 km? areas are

Table 1

Basic information related to surface radiation measurements in HIWATER-MUSOEXE and regression fits between PSP/PIR pyranometer and other pyranometers.
Site Instrument Manufacturer Regression functions RMSD before calibration RMSD after calibration
NO. 1 CNR4 Kipp & Zonen y = 1.003x — 0.432 9.74 4,58
NO. 2 CNR4 Kipp & Zonen y = 1.001x — 0.368 517 4.62
NO.3 NRO1 Hukseflux y = 0.981x + 0.922 7.81 3.67
NO. 4 CNR1 Kipp & Zonen y = 0.980x + 1.418 7.40 2.84
NO. 5 CNR1 Kipp & Zonen y = 0.999x + 3.654 5.08 3.74
NO. 6 CNR4 Kipp & Zonen y = 1.012x — 5.695 7.61 6.93
NO. 7 CNR4 Kipp & Zonen y = 0.956x — 7.954 26.77 7.63
NO. 8 CNR4 Kipp & Zonen y = 1.002x — 3.146 5.02 432
NO.9 CNR1 Kipp & Zonen y = 0.979x — 1.583 11.47 5.75
NO. 10 CNR1 Kipp & Zonen y = 0.987x + 0.908 6.63 4.80
NO. 11 CNR1 Kipp & Zonen y =1.012x — 3.113 5.24 4.66
NO. 12 CNR4 Kipp & Zonen y = 0.999x — 1.143 447 412
NO. 13 CNR4 Kipp & Zonen y = 1.000x — 1.151 4.07 3.60
NO. 14 CNR4 Kipp & Zonen y = 0.997x + 0.689 3.46 3.11
NO. 15 PSP/PIR Eppley - - -
NO. 17 CNR1 Kipp & Zonen y = 0.959x + 3.528 15.19 6.34
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selected; while for the grid-level domain standard 0.25°, 0.50° and 1°
equal-angle grid areas are chosen.

3.1. Representativeness error within the kilometer-level domain

In the main graphs of Fig. 1, Sites 4, 6 and 7 clustered together in a
small group covering an area of ~1 x 1 km?. Therefore, SSR measure-
ments from these sites would be used to reveal the representativeness
error within the 1 x 1 km? domain, and all measurements in the flux-
observation matrix were exploited to draw the representativeness
error within the 5 x 5 km? domain.

First, “areal SSR” on the kilometer-scale was estimated by a sim-
ple multi-point averaging method. That is, the “areal SSR” over the
1 x 1 km? and the 5 x 5 km? domains were separately estimated
by averaging the measurements from Sites 4, 6 and 7, and all sites ex-
cept Site 16. Second, measured SSR from each individual site were
compared with the estimates of areal SSR, and differences between
them were deemed the representativeness error from point to kilo-
meter scales. Since the means of all sites are seen as the estimates
of areal SSR, the mean of representativeness error consequentially
is zero. Namely, there is no overall bias for the representativeness
error. It should be acknowledged that such a definition of represen-
tativeness error certainly contains the contamination from measure-
ment uncertainties. But in view of the fact that our measurements
had been checked and processed seriously, this contamination
should be marginal (a rough estimate of it is given by the “RMSD
after calibration” of Table 1). In this study, the original 10-min SSR
is regarded as the “instantaneous” measurements and other time-
scales include 1 and 3 hours; 1, 5 and 10 days; and 1 month. Fig. 2
presents a period of typical “instantaneous” (10-min) measurements
over 5 x 5 km? domain in July 2, 2012. In the figure, the red line
indicates the estimates of areal SSR, and gray regions denote the
“instantaneous” measurements from each individual site, in which
the dark gray region encloses 50% of the sites. One can visualize the
discrepancy between the “areal SSR” and individual SSR observed
at each site. Due to strongly increasing uncertainty both in measure-
ments and radiative transfer simulations at low solar elevations
(Deneke, Feijt, & Roebeling, 2008), our study restricts solar zenith
angles to a maximum of 80° for “instantaneous”, hourly and 3-hour
measurements.
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3.2. Representativeness error within the grid-level domain

Around the flux-observation matrix of HIWATER-MUSOEXE in Fig. 1,
standard grid domains of 0.25° x 0.25°, 0.50° x 0.50° and 1° x 1° (only
the 0.25° x 0.25° domain is shown) were delineated to study the repre-
sentativeness errors in the grid-level surroundings.

Representativeness error of point-scale measurements with respect
to grid-level surrounding include two levels of errors, namely detailed
error from point to kilometer scales and macroscopic error from kilome-
ter to grid scales. Section 3.1 describes what we consider as the first type
of error. Thus, here the second type of error is briefly introduced. Fol-
lowing the lead of Li et al. (2005) and Hakuba et al. (2013), we also at-
tempt to address this issue by means of high resolution satellite
radiation products. The mean of satellite products within one grid is as-
sumed be the surrogate of grid area SSR, and the differences between it
and each pixel values are the macroscopic representativeness error
from kilometer to grid scales. Accordingly, the macroscopic representa-
tiveness errors for the 0.25° x 0.25°, 0.50° x 0.50° and 1° x 1° grid do-
mains were separately calculated using the satellite products of 0.05°
resolution produced by us before (Huang et al., 2016). It should be
noted that such approaches to determine the kilometer-to-grid repre-
sentativeness error also have limitations. Our SSR products tend to be
smoothed because the coarser aerosol products are used in the retriev-
ing algorithm. This eventually will lead to an underestimation on the
representativeness error.

Finally, representativeness error from the point-scale to grid-scale is
estimated by combining the point-to-kilometer sampling error with the
kilometer-to-grid sampling error. In fact, here the kilometer scale refers
to 5 km spatial scale and the underlying assumption is the representa-
tiveness error determined for the 5 x 5 km? area can be generalized to
the rest regions within the grid. The detailed computation on the com-
posite representativeness error from point to grid scales is discussed in
Section 3.3.

3.3. Measures of representativeness error

To measure the representativeness error within a given area, a sta-
tistic, mean squared deviation (MSD) in Eq. (1) is defined firstly. In
this study, the MSD is the variance of representativeness error in
time-space domain, which measures the overall variability of

14:00 16:00

18:00

20:00

Date: July, 2, 2012

Fig. 2. “Instantaneous” (10-min) SSR measurements from 16 HIWATER-MUSOEXE sites and “instantaneous areal SSR” (red line) over the 5 x 5 km? domain on July 2, 2012 (the light gray
region denotes fluctuations of measurements among sites, and the dark gray region encloses 50% of sites; the columns at the bottom represent cloud cover fraction (CCF), while the gray

ones indicate nonexistent CCF).
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representativeness error. Then, root mean squared deviation (RMSD)
and relative mean deviation (RMD) are shown in Eq. (2). In nature,
RMSD is the standard deviation (SD) of representativeness error in
time-space domain, and describes the average dispersion degree of rep-
resentativeness error, while RMD gives the spatial variability of repre-
sentativeness error relative to the area mean in percent. The detailed
definitions are listed below,

1 n m _ 5

MSD = nx mzi:IZ]‘:1 (Xij—Xi) (1)

RMSD = v/MSD, RMD:R";’(ijO 2
and,

X 1 m ,

P = X 3)

% 1y 5 4

7EZ1’:1 i 4)

in which, X;; denotes one sample or measurement in the space domain
of j (total m) and the time series of i (total n), X; is the means over a cer-
tain space domain (namely estimates of areal SSR), and Xis the average
of all samples or measurements.

In Section 3.2, we pointed out that the representativeness error from
the point-scale to the grid-scale was the combination of point-to-5km
sampling error and 5km-to-grid sampling error. Assuming the two
levels of sampling errors are normally distributed, due to no overall
bias (means of two levels of sampling errors both are 0), the MSD of
the composite representativeness error in numerical value is the arith-
metic sum of their respective MSD (Deneke, Feijt, van Lammeren, &
Simmer, 2005). Thus, the statistic on the point-to-grid representative-
ness error is given by

RMSDjoc = RMSDpgsis + RMSD3 106 (5)

where RMSDpt,,RMSDpeosivand RMSDs o Tespectively are the com-
posite RMSD, the corresponding RMSD from the point to 5-kilometer
scales and the corresponding RMSD from the 5-kilometer to grid scales.
Furthermore, approximately the composite RMD is equal to the per-
centage ratio of the composite RMSD to the mean SSR.

4. Results and discussion

As presented in Section 3, the representativeness errors of point-
scale measurements with respect to kilometer-level surroundings
were investigated from “instantaneous” to monthly timescales by ana-
lyzing the matrix SSR measurements from HiWATER-MUSOEXE. For
the 1 x 1 km? domain, 3.2~21.9 W/m? of RMSD and 1.2~4.4% of RMD
are found with the smaller value for monthly timescale and larger one
for “instantaneous” timescale; whereas for the 5 x 5 km? domain,
3.2~40.2 W/m? of RMSD and 1.2~8.1% of RMD are seen, respectively.
Meanwhile, representativeness errors of point-scale measurements
with respect to the grid-level areas were discussed based on the com-
bined efforts from HIWATER-MUSOEXE and the previous satellite prod-
ucts. Within the 0.25° x 0.25° grid, the composite RMSD and RMD
respectively are 5.1~53.9 W/m? and 1.9~9.8% corresponding to the
monthly till the instantaneous averaging intervals; within the
0.50° x 0.50° grid, the range of composite RMSD and RMD are
6.3~70.3 W/m? and 2.2~12.7%, respectively; while within the 1° x 1°
grid, they are 8.8~91.7 W/m? and 3.3~16.6%, respectively.

Compared with the results of Li et al. (2005), representativeness er-
rors obtained here are significantly larger than those reported over
Southern Great Plains (SGP) in the United States. One possible reason
is the high dependence of representativeness errors on cloud cover

and type (Barnett, Ritchie, Foat, & Stokes, 1998; Hakuba et al., 2013),
which may have different climatology in the two study areas. Another
potential reason is that Li et al. (2005) only considered the variability
of the high resolution satellite products for deriving the representative-
ness, without including the contribution from the high frequency SSR
variability within satellite pixels.

4.1. Dependence on timescale

No matter on which level of spacescales, the dependences of repre-
sentativeness errors on timescales are both very strong. Time-
dependent representativeness errors indicate the time cycle of cloud
variation.

Fig. 3 shows the representativeness errors of point-scale measure-
ments within two kilometer-level domains. The left vertical axis repre-
sents RMSD, the right vertical axis represents RMD, and the abscissa axis
is the averaging timescale. The representativeness errors rapidly de-
crease as the averaging timescale increases to a day. On the daily time-
scale, RMSD of the representativeness errors within 1 x 1 km? and
5 x 5 km? domains are reduced to about 4.3 W/m? and 5.1 W/m?, re-
spectively; the corresponding RMD are 1.7% and 2.0%. Beyond one day,
they tend to level off to stable values. On timescales less than one day,
representativeness errors also are strongly contingent on the specific
size of domains, whereas on longer timescales representativeness errors
have a convergence between the two domains. Obviously, the ability of
ground-based point observation representing larger surroundings
would be significantly strengthened as the timescale increases to a
day or longer.

Similar features are also observed for grid-level domains. However,
as described in Fig. 4, representativeness errors here are clearly greater
that those within the kilometer-level domains. Especially on the instan-
taneous timescale, the RMSD of the representativeness error within the
1° x 1° grid is as high as 92 W/m?, and the corresponding RMD is 16.1%.
Even on the month scale, the inherent representativeness error still is
close to 10 W/m?, a magnitude that is only slightly less than the goal ac-
curacy of global surface radiative flux (Suttles & Ohring, 1986) set by the
World Climate Research Program (WCRP). It seems that for any stan-
dard 1° product it is very challenging to achieve this accuracy in a rou-
tine validation if representativeness error is not considered.

4.2. Influence of cloud cover fraction

Another evident property regarding representativeness error is that
it is apparently affected by cloud cover fraction (CCF), regardless of time
and space scales. Let us focus on Fig. 2 again. In the figure, the columns at
the bottom denote the varying CCF with time. Before 15:20 Beijing time,

50 10

45 + 19

40 + 18

35 cfam
‘2 30t 16 =
= -0 = RMD for ~1%1 km’ =
= =
E/ 25 -o-RMDfor-5%5km’ | 13~
& =
= 20r 14 &
]

15 F 413

10 || —=—RMSD for~1%1 km® 3 Ty 42

—@— RMSD for -5X5 km’ 5
5t 11
0 L L L 0
10" 10° 10' 10 10°

Averaging Time Scale (hours)

Fig. 3. Representativeness errors of point-scale SSR measurements within two kilometer-
level domains (the left is the RMSD axis; the right is the RMD axis).
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Fig. 4. Representativeness errors of point-scale SSR measurements within three grid-level
domains (explanation is same as for Fig. 3).

it was substantially cloudy; then it began to gradually transition into
partial cloud cover; finally after ~90 min the skies became totally
clear. Drastic variability among the sites' measurements can be
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discerned during the transitional stage. Accordingly, the representative-
ness error in this period is very large.

Fig. 5 further gives the fluctuations of the representativeness errors
from “instantaneous” to daily timescales with varying CCF, also using
the 5 x 5 km? domain as an example. Here, calculations of CCF on any
timescales all are based on the 10-min measurements. Using the
matched aerosol observations, “instantaneous” atmospheric flux trans-
mittance (AFT) in clear-sky are modelled firstly, and then measured
site-specific AFT are compared with modelled AFT to determine wheth-
er clouds are present or not. Subsequently, all “instantaneous” atmo-
spheric conditions at each site and in one temporal interval are
judged, and CCF on one timescale is the percentage of cloudy cases in
all atmospheric conditions. One phenomenon visible on Fig. 5 is that
the magnitudes of representativeness errors quickly increase and then
decrease with ascending CCF. Thus, when skies are partly covered by
clouds, the representativeness errors are the largest. In contrast, under
completely clear or cloudy conditions, representativeness errors are rel-
atively small.

A similar feature occurs on other space and time scales, too. Fig. 6 de-
picts the fluctuations of hourly representativeness errors within the
0.25° x 0.25°, 0.50° x 0.50°and 1° x 1° grid domains as CCF increases.
This is not a surprising phenomenon. The reason for this behavior can
be simply explained by the fact that cloud are usually the main driver
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of the radiation field variability, and the most spatially homogenous
cloud cover situations are complete cloud cover or clear sky situations.

4.3. Implications for the validation of remote sensing products

Our study on representativeness error has important implications
for the validation of SSR remote sensing products via a direct compari-
son to ground-based single site's measurements. The quality of SSR
products usually is quantified by metrics such as the root mean square
error (RMSE) between products and ground-based measurements.
The results of this study indicate that such metrics may include a com-
ponent that is not due to the product error but to the difference in
their spatial scales.

For kilometer-level SSR products, on a large timescale longer than or
equal to one day, representativeness error indeed could be ignored in
the validation because the representativeness error is close to the in-
strumental observation error. On daily timescale the RMSD of represen-
tativeness error is 5.1 W/m? (~2%), while Michel, Philipona, Ruckstuhl,
Vogt, and Vuilleumier (2008) confirmed for widely used commercial
pyranometers such as Kipp & Zonen CM3, the RMSE for daily SSR from
the instrumental observation error and uncertainties is as high as
5 W/m? (~2%). However, on a shorter timescale, especially for instanta-
neous products, considerable representativeness error is noted. For ex-
ample, for the 5 x 5 km? domain, RMSD of the “instantaneous”
representativeness error is as high as 40 W/m?2. So, in a practical

validation, to what extent does the representativeness error affect the
validation results, and what proportion of the product-measurement
differences can be attributed to the inherent sampling error of radiation
fields?

We attempt to answer these questions by using the surface matrix
observations to actually validate the instantaneous satellite products in-
troduced in Section 2.2 during the matrix experiment. In Fig. 1, it is
noted that most sites, except Sites 11 and 17, all fall into the same
pixel implied by the satellite products. Consequently, their means of
multiple sites (excluding Sites 11 and 17) are used to evaluate the satel-
lite products rather than the measurements of any single site. Fig. 7 pro-
vides the validation results of the instantaneous products which are
classified into three groups by the cloud cover fraction. In the figure,
the completely clear or cloudy cases are displayed at both sides, and
the middle is the partly cloudy case in which the representativeness
error is considered to be relatively large. Here, overall the RMSE is re-
duced to 87.6 W/m?, while the mean RMSE from the validations based
on each individual site is 101.2 W/m?2. Specifically, for the partly cloudy
case the RMSE is effectively limited to 65.2 W/m? from an averaged
RMSE of 86.7 W/m? derived from the site by site validations, while for
the completely clear or cloudy cases the improvements are small. More-
over, this validation result apparently is better than any validation result
which is conducted using single site measurements. For this reason, to a
certain extent the product-measurement differences in routine valida-
tions indeed are caused by their differing spatial scales, and our results
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indicate that for instantaneous products with a frequent resolution of
0.05°, the error due to the inadequate representativeness of point-
scale measurements increases the final RMSE by approximately 13.4%.
However, even though multi-site measurements are used to validate
the satellite products, there is still a considerable discordance between
measurements and satellite products for the cloudy case (the right in
Fig. 7). It seems that the retrieval quality of satellite products still
needs further refinement under cloudy skies, but in practice it is very
challenging in view of the style of satellite observing and the ubiquitous
cloud inhomogeneity (Deneke et al., 2005; Nunez, Fienberg, &
Kuchinke, 2005). In Fig. 7, points noted with red represent the contra-
dictions where clear skies are suggested by all sites’ measurements
but the satellite products suggest cloudy skies, or the opposite occurs.
Obviously, these cases would contaminate the validation results heavily.
One natural challenge for current high spatial resolution SSR satellite
products is the cloud inhomogeneity given the fact that 3D radiative
transfer effects are neglected in the retrieval scheme. Accordingly, the
inherent shortage of the kilometer-level SSR satellite products also sig-
nificantly contributes the product-measurement differences. In addi-
tion, impacts from representativeness errors are markedly reduced
when longer timescales are assigned. For hourly products, representa-
tiveness error increases the final RMSE by ~5%. For daily products,
only ~3% of increase in the final RMSE is due to the representativeness
error. Incidentally, Fig. 7 also demonstrates that in routine validations
we should be consciously aware of the cases that atmospheric condi-
tions indicated by satellite products and surface measurements are
distinct.

The preceding discussion reveals that in the routine validation of in-
stantaneous kilometer-level products a significant product-
measurement discrepancy (over 10%) is caused by the inadequate spa-
tial representativeness of ground measurements. A method of enhanc-
ing spatial representativeness of ground measurements is lowering
their temporal resolution (Deneke, Knap, & Simmer, 2009; Hakuba
et al,, 2013). Namely, inadequate spatial representation can be partly
compensated with temporal averaging on point measurements
(Deneke et al., 2008). Likewise, the matrix SSR measurements were
used to obtain the “instantaneous areal SSR” over the 5 x 5 km? domain.
Through comparing with the different temporal resolution measure-
ments at each individual site, we investigated on which timescale indi-
vidual site measurements and “instantaneous areal SSR” matched best.
Table 2 gives the statistics on comparison results. We see that their dis-
crepancy will slightly decrease at the beginning, and then rapidly in-
crease as the temporal resolutions descend. The best matching
timescale is 30 min. This finding suggests that for the validation of in-
stantaneous kilometer-level products, most optimal timescale of
ground-based measurements is 30 min instead of smaller time inter-
vals. It can be explained because the higher frequency ground-based
measurements perhaps include more detailed cloud information on
sub-pixel scale, which cannot be captured by satellite pixels.

However, for the grid-level domains, the representativeness error is
at a greater order of magnitude than the instrument error, regardless of
timescales. For instance, for the standard grid of 1° resolution used by
such as GEWEX-SRB, CEREX (Wielicki et al., 1996) etc., even on the
monthly timescale, the representativeness error still is up to 3.3%,
which is much larger than common instrumental observation error of
~1% (Michel et al., 2008). Thus in the validation of the grid-level SSR
products, even on large timescales longer than one day, the representa-
tiveness errors between ground-based measurements and remote

Table 2
Comparison results of “instantaneous areal SSR” and different temporal resolution individ-
ual site's measurements over the 5 x 5 km? domain.

Statistics 10 min (Ins) 30 min 50 min 70 min 90 min
RMD (%) 8.76 8.07 10.34 11.23 12.12
RMSD (W/m?) 4324 39.51 50.25 55.84 61.23

sensing products still cannot be ignored. Furthermore, unlike
kilometer-level satellite products which are susceptible to cloud inho-
mogeneity and 3D radiative transfer effects, grid-level products them-
selves are more robust because for large domains of >25 x 25 km?,
the influences from the 3D effects of clouds would be mitigated dramat-
ically (Wyser, O'Hirok, & Gautier, 2005; Wyser, O'Hirok, Gautier, &
Jones, 2002). Therefore, grid-level products are insensitive to some er-
rors, and except for the potential accuracy problems the product-
measurement differences more likely are caused by the inadequate rep-
resentativeness of measurements. These facts both imply that for rou-
tine validations of grid-level products, the lack of spatial
representativeness is probably a dominant factor at many sites, which
results in increased product-measurement differences.

It should be said that the inadequate spatial representation of point
observations within a larger grid cell had been noticed early (Li,
Whitlock, & Charlock, 1995; Zhang et al., 2013). Li et al. (2005) suggested
this question can be resolved by the use of multiple sites to approximate a
larger grid cell's mean and just 2-3 sites are needed. Yet, taking into ac-
count the operability, level-by-level or hierarchical validation approach
seems to be more appropriate. That is, ground-based measurements are
used to validate the kilometer-level SSR products, and then the validated
products are further exploited to evaluate grid-level SSR products.

5. Summary

Ground-based solar radiation measurements are frequently used for
directly validating satellite-derived surface solar radiation (SSR) prod-
ucts and even correcting any biases in the remote sensing products
(Zhang, Liang, Wild, & Jiang, 2015). Nevertheless, we realize that their
spatial representativeness is per se different, and differences of observa-
tions and products not only are caused by the product-generating algo-
rithms themselves but also by poor representativeness of surface sites.

In this paper, we first investigate the inadequate spatial representa-
tiveness of ground-based solar radiation measurements and quantify
the representativeness errors of point measurements with respect to
larger surroundings. Subsequently, features on representativeness er-
rors are extracted, and finally their influences on the routine validation
of remote sensing products are discussed. Our study demonstrates that
wildly fluctuating representativeness errors indeed exist in the routine
validation of remote sensing products, which strongly depend on their
time and space scales as well as instant atmospheric conditions. For
the most common 5 x 5 km? domain, the RMSD of the “instantaneous”
representativeness error is about 40 W/m? (~8.1% of the mean SSR);
whereas for the standard 1° x 1° grid domain, the RMSD of the instan-
taneous representativeness error is as great as 91 W/m? (~16.1% of
the mean SSR). Such scale-dependent representativeness errors con-
versely provide critical constraints on the direct comparisons of surface
measurements and satellite products, and thus are valuable for
narrowing down the uncertainty range between them.

For a kilometer-level SSR product, if its timescale is longer than or
even equal to one day, in validation the error originating from their dif-
ferent spatial footprints can be completely neglected. However, if its
timescale is less than one day, representativeness error has a certain in-
fluence on the validation result, especially for instantaneous products.
Our practical validation via utilizing the high-density SSR matrix obser-
vations further points out that on the instantaneous and 0.05° time-
space scales the error due to the inadequate representativeness of
point-scale measurements increases the final RMSE by approximately
13.4%. From the perspective of reducing the representativeness error,
for the similar time-space resolution products, the best matching time-
scale of surface single site's measurements is 30 min instead of shorter
time intervals. This is similar to the conclusion of 40 min drawn by
Deneke et al. (2009). In addition, in routine validations, the cases for
which distinct atmospheric conditions are indicated by satellite prod-
ucts and surface measurements, should be particularly noted and even
excluded.
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Different conclusions are drawn for grid-level products. Though rep-
resentativeness errors similarly rapidly decrease with increasing time-
scales, for the standard 1° grid even on the monthly timescale
representativeness error still is much larger than the instrument error.
As spatial coverage increases, a single observation site really increasing-
ly can not represent the areal means of the grid, even if the site is located
at the center of the grid. Here representativeness error probably has a
great influence on routine validation results because compared with
kilometer-level products grid-level products are insensitive to some er-
rors (e.g., the error from cloud inhomogeneity and 3D radiative transfer
effects). Therefore, for grid-level products hierarchical validation ap-
proach seems to be more desirable.

Moreover, we note that representativeness errors of point-scale
ground-based solar radiation measurements are also related to the
local climate and weather regimes, especially cloud climatology. Thus,
representativeness of surface measurements is region-specific. None-
theless, our study still offers some in-depth insights into how represen-
tativeness error influences a routine validation, and some conclusions
may be used to guide the actual validation work. Our discussion on rep-
resentativeness errors will promote a better assessment for different
types of remote sensing products using ground-based observations,
and thereby is also beneficial to the further improvements of the quality
of satellite-derived products.
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