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22 Abstract: Accurate remotely sensed snow depth (SD) data are essential for monitoring 

23 and modeling hydrological processes in cold regions. While the available passive 

24 microwave SD data have been widely used by the community, the coarse spatial 

25 resolution (typically at 0.25°) of these data impedes the explicit representation of the 

26 hydrological processes in snow-dominated regions, especially in mountainous regions 

27 with complex terrain. To improve the spatial resolution and quality of passive 

28 microwave SD data for the Tibetan Plateau (TP), we develop a spatial-temporal 

29 downscaling method to produce a 19-year, daily 0.05° SD product by combining the 

30 existing high temporal resolution daily SD data and the high spatial resolution 8-day 

31 cloud-free Moderate Resolution Imaging Spectroradiometer (MODIS)-based snow 

32 cover probability (SCP) data, the latter of which were produced using an advanced 

33 temporal filter algorithm. Validations against the observed SD data from 92 

34 meteorological stations suggest that the newly-developed 0.05° SD product greatly 

35 improves upon the original 0.25° version. Based on this 0.05° SD product, we found 

36 that higher SD values are mainly distributed on the southeastern and eastern TP as well 

37 as the Himalaya and Karakoram, while much lower SD values occur on the inner TP. 

38 During 2000–2018, the TP-averaged annual SD showed a slight (p > 0.05) increasing 

39 trend because there were little changes in SD for most grids across the TP. Regarding 

40 different basins within TP, the annual SD during 2000–2018 slightly increased over 

41 most basins except for the Amu Dayra, Ganges, Brahmaputra, and Inner TP, where the 

42 basin-scale SD showed insignificant decreasing tendencies. In general, the spatial-

43 temporal variations in the SD across the TP were very heterogeneous because SD was 



44 affected by multiple climatic factors. The newly-developed 0.05° SD product could 

45 facilitate our understanding of the hydrological processes on the TP through a more 

46 explicit representation of the gridded-based snow water information.

47 Keywords: snow depth, downscaling, snow cover probability, Tibetan Plateau



48 1. Introduction

49 Snow is a key component of the hydrological cycle and an important indicator of 

50 climate change (Pulliainen et al., 2020; Musselman et al., 2021). It also plays a key role 

51 in the energy balance because of its strong effect on the surface albedo and soil 

52 temperature, thereby modulating the local and regional weather and climate (Henderson 

53 et al., 2018; Jia et al., 2021; You et al., 2020). As the snowpack can store a large amount 

54 of the precipitation that falls during the cold season, it also plays a vital role in the 

55 spring runoff formulation (Barnett et al., 2005; Huninga and AghaKouchaka, 2020), 

56 impacting the downstream agricultural production, which relies on irrigation (Qin et 

57 al., 2020). The snow depth (SD) is the most important variable that describes the 

58 amount of snow for a given region (Kinar and Pomeroy, 2015; Matiu et al., 2021). 

59 Hence, reliable high-quality SD datasets are essential for the above applications related 

60 to the weather and climate, water resource management, and flood monitoring in cold 

61 regions.

62 Several approaches have been extensively used to monitor the SD, including field 

63 observations, land surface modeling, optical remote sensing, and passive microwave 

64 remote sensing. Although meteorological stations can provide accurate SD observation 

65 data for a long time series (Ma et al., 2020; Matiu et al., 2021), the number of stations 

66 in mountainous regions where the snow often occurs remains low (Lundquist et al., 

67 2019), impeding the understanding of snow dynamics in high-elevation areas. In terms 

68 of the model-based SD estimates, including the lumped conceptual models (e.g., Snow-

69 17 model) and the physically-based land surface models (e.g., those from the Global 



70 Land Data Assimilation System Version 2.1), the uncertainties in the modeling forcing 

71 and the parameters may bring potential errors in regional scale SD estimation, which is 

72 especially true for remote areas where ground observed meteorological data are very 

73 sparse (Bian et al., 2019; Ma et al., 2020). While certain atmospheric reanalysis data, 

74 e.g., the Japanese 55-year Reanalysis (JRA-55), has also assimilated the ground 

75 observations in deriving the gridded SD data, they are typically at the relatively coarse 

76 spatial resolutions with an order of 0.5° or larger (Bian et al., 2020; Orsolini et al., 2019). 

77 Although snow cover information can be extracted from optical remote sensing data 

78 under clear sky conditions (Hall et al., 2007; Bhatti et al., 2016; Zhang et al., 2014), it 

79 is less accurate and more difficult to estimate the SD using the visible and infrared 

80 bands (Dai et al., 2018). With the rapid development of passive remote sensing over the 

81 last four decades, this technique has become widely used for detecting SD information 

82 by taking advantage of the difference in the microwave brightness temperature at 

83 different frequencies regardless of cloud contamination since the 1970s (Chang et al., 

84 1987; Che et al., 2008; Liang et al., 2015; Tait, 1998; Tedesco et al., 2004). This is 

85 because the deeper the snowpack is, the more positive the microwave energy difference 

86 detected between the horizontally polarized brightness temperatures of the 19 (or 18) 

87 GHz and 37 (or 36) GHz bands (Kelly et al., 2003; Che et al., 2008; Xiao et al., 2018).

88 Previous studies have dedicated much effort to developing and calibrating 

89 numerous SD estimation algorithms for use with passive microwave remote sensing 

90 data. For example, the relationship between the SD and the brightness temperature 

91 gradients of the 18 and 37 GHz bands was used for SD retrievals from Nimbus-7 



92 Scanning Multichannel Microwave Radiometer (SMMR) data (Chang et al., 1987). 

93 Considering the effects of forested areas and crystal size on SD estimation, Foster et al. 

94 (1997) presented an algorithm to improve the original one proposed by Chang et al. 

95 (1987) for North America and Eurasia. The Chang et al. (1987) algorithm was also 

96 adjusted to consider several factors influencing the SD retrieval to achieve a more 

97 accurate result in China (Che et al., 2008). This valuable effort produced a Chinese 

98 long-term SD dataset based on this algorithm for the last four decades using three 

99 passive microwave remote sensing sensors, i.e., the SMMR, Special Sensor 

100 Microwave/Imager (SSM/I), and Special Sensor Microwave Imager/Sounder (SSMI/S) 

101 (Che et al., 2008; Dai et al., 2015; 2017). Although the microwave remote sensing SD 

102 data allow us to eliminate cloud contamination, its coarse spatial resolution (mostly at 

103 0.25°) is too coarse to capture the fine-scale characteristics of SD, which is especially 

104 true in mountainous areas with a complex terrain. In addition, the coarse resolution of 

105 such SD products is not adequate for hydrological modeling studies in small watersheds 

106 where the runoff is often simulated at the kilometer scale.

107 The combination of optical snow cover products and microwave snow products is 

108 an important step in developing accurate snow cover and SD products. To mitigate the 

109 uncertainty of microwave remote sensing snow products (e.g., SD and snow water 

110 equivalent) due to its low spatial resolution, it may be preferable to blend the existing 

111 coarse resolution microwave remote sensing SD products and other auxiliary datasets 

112 with higher spatial resolutions to improve the spatial resolution of the SD product. To 

113 this end, various types of snow cover information, e.g., binarized snow cover, fractional 



114 snow cover, and annual snow cover duration, usually have much higher spatial 

115 resolutions and thus are widely used to enhance passive microwave snow products (Gao 

116 et al., 2010; Tang et al., 2016; Huang et al., 2016; Dai et al., 2018; Wei et al., 2021).

117 The three main factors derived from the optical-based snow cover information 

118 were used to enhance the coarse resolution microwave SD and snow water equivalent 

119 datasets. First, a binarized snow cover image was used. Gao et al. (2010) redistributed 

120 the snow water equivalent information using the number of snow-covered pixels from 

121 the Moderate Resolution Imaging Spectroradiometer (MODIS) data in a passive 

122 microwave pixel. However, a binarized snow cover image classified using a threshold 

123 tends to underestimate patchy snow cover information to a large extent (Zhang et al., 

124 2019). Thus, compared to the binarized snow cover, the fractional snow cover should 

125 be given priority to enhance the coarse resolution microwave SD. Second, the spatial 

126 information about the daily fractional snow cover was used. Tang et al. (2016) used a 

127 daily fractional snow cover product to enhance the daily microwave SD data based on 

128 the strong relationship between these two snow parameters. By combining ground 

129 emissivity, land surface temperature, and fractional snow cover, the SD data was further 

130 improved using a novel spatial dynamic method with a higher spatial resolution on the 

131 TP (Dai et al., 2018). However, the accuracy of the daily snow cover product is largely 

132 affected by cloud cover (Zhang et al., 2019). Third, the annual snow cover duration was 

133 used (Mhawej et al., 2014; Huang et al., 2016; Wang et al., 2019; Wei et al., 2021) 

134 because there is a strong relationship between the snow cover duration and the SD 

135 during a given year. The annual snow cover duration obtained from MODIS data was 



136 introduced to redistribute the microwave snow water equivalent data (Mhawej et al., 

137 2014) and the SD data (Huang et al., 2016). The relationships between the SD and 

138 several factors (e.g., longitude, latitude, terrain, and snow cover duration) were built 

139 using multi-factor regression models in order to reconstruct the high-resolution SD 

140 products (Wang et al., 2019; Wei et al., 2021). However, using the annual snow cover 

141 duration to reconstruct the daily passive microwave SD pixels is problematic because 

142 of the temporal difference.

143 While progress in downscaling the SD (snow water equivalent) has been made by 

144 taking advantage of more factors, less attention has been paid to enhancing the SD 

145 product by taking advantage of the high spatial resolution MODIS snow cover 

146 probability (SCP) product in previous studies. In short, neither the annual snow cover 

147 duration nor the daily snow cover product, e.g., the binarized snow cover and fractional 

148 snow cover, are suitable for use as a downscaling factor to produce SD datasets with 

149 high temporal-spatial resolutions. The utilization of the MODIS SCP information 

150 during several days can provide new opportunities, thereby improving the spatial 

151 resolution of the passive microwave SD data.

152 With an average altitude higher than 4000 m above sea level (a.s.l.), the Tibetan 

153 Plateau (TP) is the source region of several major Asian rivers, including the Indus, 

154 Ganges, Brahmaputra, Salween, Mekong, Yellow, and Yangtze rivers (Fig. 1), which 

155 is therefore known as the Asian Water Tower (Immerzeel et al., 2010). In this context, 

156 snow is extremely important because it is one of the key water resources that supply 

157 more than 1.6 billion people downstream in China, India, Pakistan, Nepal, Bhutan, and 



158 Bangladesh (Immerzeel et al., 2020). However, in-situ observations of snow 

159 information are particularly sparse on the TP because of its complex terrain and harsh 

160 climate (Ma et al., 2020). For this reason, satellite-observed SD products for the TP 

161 have attracted increasing attention because of their ability to estimate the snow water 

162 resources in this inaccessible region with formidable natural conditions (Tang et al., 

163 2016; Xiong et al., 2017; Zhang and Ma, 2018). However, the development of high-

164 resolution (both spatially and temporally) remote sensing SD data in the Tibetan Plateau 

165 is challenging because of its heterogeneous landscape and scarce ground observations 

166 (Bian et al., 2019; Orsolini et al., 2019). Having recognized this need, the objectives of 

167 this study are (i) to develop a spatiotemporal downscaling method by taking advantage 

168 of the spatial information of the MODIS SCP and the temporal information of the 

169 passive microwave SD during an 8-day period to produce a finer resolution (i.e., 0.05°) 

170 SD product across the TP; (ii) to determine whether the accuracy of this newly-

171 developed 0.05° SD product is better than that of the previous coarse-resolution SD 

172 dataset; and (iii) to investigate the spatial and temporal variations in SD over TP during 

173 the last two decades.

174

175 2 Data

176 2.1 Fractional snow cover and clear index

177 The MODIS snow cover data version 006 from 2000 to 2018 from the Terra 

178 (MOD10C1) and Aqua (MYD10C1) satellites were downloaded (accessible from the 

179 National Snow and Ice Data Center (NSIDC), http://nsidc.org). The spatial and 



180 temporal resolutions are 0.05° and daily, respectively (Hall et al., 2002). Both datasets 

181 are comprised of three sub-datasets, i.e., the fractional snow cover (FSC), cloud 

182 obscuration percentage, and clear index (CI) data, ranging from 0% to 100%. Each sub-

183 dataset of the MODIS snow cover data includes the following categories: lake ice, 

184 inland water, ocean, cloud obscured water, data not mapped, and data filled (Table 1). 

185 Because lake ice, inland water, ocean, and cloud obscured water have no snow cover 

186 information, these variables were reclassified to 100% in the clear index data. The data 

187 that were not mapped and the filled data were considered as cloud cover, so they were 

188 reclassified to 0% in clear index data. The FSC and CI were calculated as follows (Hall 

189 et al., 1995; Salomonson et al., 2006):

190

,FSCTerra = 1.45 ×
𝜌Green ― 𝜌SWIR1
𝜌Green + 𝜌SWIR1 ―0.01 (1)

191

192 where FSCTerra is the fractional snow cover obtained using the MODIS Terra 

193 instrument; ρGreen is the reflectance of the green band; and ρSWIR1 is the reflectance 

194 of the SWIR1 band.

195

,FSCAqua = 1.91 ×
𝜌Green ― 𝜌SWIR2
𝜌Green + 𝜌SWIR2 ―0.64 (2)

196

197 where FSCAqua is the fractional snow cover obtained using the MODIS Aqua instrument; 

198 ρ Green is the reflectance of the green band; and ρ SWIR2 is the reflectance of the 

199 SWIR2 band.



200

,CI = 1 ― FCC (3)

201 where CI is the daily clear index data; and FCC is the daily fractional cloud cover.

202

203 2.2 Gridded SD product

204 The long-term daily, 0.25° SD dataset from 2000 to 2018 was downloaded from the 

205 National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/zh-hans/). This dataset 

206 was obtained by the SMMR, SSM/I, and SSMI/S (Che et al., 2008; Che, 2015; Dai et 

207 al., 2015; 2017). To improve the consistency of the passive microwave remote sensing 

208 data derived from the various sensors, the brightness temperature data derived from 

209 these instruments (SMMR, SSM/I, and SSMI/S) were cross-calibrated (Dai et al., 2015). 

210 This SD dataset has long been regarded as the most accurate snow depth estimation for 

211 China and thus has been widely used not only in previous studies related to SD 

212 downscaling (Huang et al., 2016; Tang et al., 2016; Wei et al., 2021) but also in 

213 understanding the effects of snow changes on regional runoff (Xu et al., 2009) and that 

214 on vegetation dynamics (Yu et al., 2013).

215

216 2.3 Ground measured SD data from meteorological stations

217 The daily SD data during 2000-2010 observed at 92 meteorological stations (Fig. 

218 1) of the China Meteorological Administration were used as the “ground-truth” values 

219 for assessing the accuracy of the gridded SD product (Wang and Wan, 2018). With 

220 elevations ranging from 1000 to 4800 m above sea level, most meteorological stations 

https://data.tpdc.ac.cn/zh-hans/


221 are located on the southern and eastern parts of the TP. The in-situ SD measurements 

222 are the most accurate record of the SD, and therefore, they are widely used for 

223 evaluating not only satellite-based SD products (Tang et al., 2016) but also the snow 

224 products in reanalysis over the TP (Orsolini et al., 2019).

225

226 3. Method

227 3.1 Definition of the snow hydrological year

228 According to the seasonal cycle of the SD in TP, the lowest monthly mean SD 

229 occurs in September over the TP. Therefore, the snow year was defined as September 

230 1 to August 31 of the following year. For example, the snow year of 2000 was from 

231 September 1 of 2000 to August 31 of 2001. It should be noted that all analyses in the 

232 present study are based on the snow year instead of the calendar year.

233

234 3.2 Cloud removal method for estimating the spatial probability of the snow cover

235 Cloud contamination of optical remote sensing products greatly limits the usage of 

236 daily MODIS snow cover datasets. To remove the clouds from the original MODIS 

237 snow cover product, the ratio of the number of snow pixels to the number of cloud-free 

238 pixels during a 15-day period was used to estimate the spatial probability of the snow 

239 cover by combining the regional snowline and an elevation zone with a 100 m interval 

240 (Li et al., 2017). However, the snow pixels were identified via binarization processing 

241 of the Normalized Difference Snow Index (NDSI) image data, with a specific threshold 

242 on the regional scale, which causes uncertainties in estimating the area of the snow 



243 cover (Zhang et al., 2019). To achieve a more accurate spatial probability of snow, the 

244 binary snow images with snow pixels and non-snow pixels were replaced by the FSC 

245 images in this study. Similarly, the binary cloud-free images with cloud pixels and non-

246 cloud pixels were replaced by the clear index (CI) images.

247 The ratio of the sum of the fractional snow cover (FSCsum) data to the sum of the 

248 clear index (CIsum) data during a period is an improved method for estimating the spatial 

249 probability of the snow cover, which makes full use of the snow cover and cloud 

250 information from the original MODIS snow product. The new advanced SCP dataset 

251 was generated by combining MODIS Terra and Aqua data for 2002–2018 at a spatial 

252 resolution of 0.05° over the entire TP. During 2000–2001, only the MODIS Terra data 

253 were used because Aqua is not available. Detailed descriptions of the three steps of the 

254 new method are provided below (Figs. 2 & 3).

255 Step 1: The sum of FSC and the sum of the clear index during an 8-day period for 

256 both the daily MODIS Terra and MODIS aqua datasets covering each pixel of the entire 

257 TP was calculated as follows:

,CIsum = ∑n
i = 1CIi (4)

where CIsum is the sum of the daily clear index data during an 8-day period.

,FSCsum = ∑n
i = 1FSCi (5)

258 where FSCsum is the sum of the fractional snow cover from the original daily MODIS 

259 snow cover product during an 8-day period.

260 Step 2: If the sum of the daily clear index for a pixel was higher than 0 within the 

261 8–day period, the spatial probability of snow cover in this pixel was estimated as 



262 follows:

,SCP =
FSCsum

CIsum
=

∑n
i = 1FSCi

∑n
i = 1CIi

(6)

263 where SCP is the 8-day cloud-free snow cover probability.

264 The above two steps effectively remove most of the clouds in the original MODIS 

265 snow cover product during an 8-day period. If CI is zero in all of the pixels from the 

266 Terra and Aqua sensors during this period, a backup forecasting method was used in 

267 the next step.

268 Step 3: If the pixel was completely (100%) covered by clouds during the entire 8-

269 day period, the spatial probability of snow cover was estimated using the cloud-free 

270 spatial probability of snow cover for the preceding 8-day period (PSCP) and that of the 

271 following 8-day period (FSCP) as follows:

.SCP = {(PSCP + FSCP)/2, PSCP and FSCP are available
PSCP, FSCP is not available
FSCP, PSCP is not available } (7)

272 Using the above three steps, we were able to estimate the SCP regardless of almost all 

273 of the cloud cover, with a time span of 24 days.

274 The results of the SCP estimation are shown in Fig. 4. The SCP could be easily 

275 estimated using Step 2 when the sum of the CI in the pixels is greater than 0 during an 

276 8-day period. When a small part of the pixels is fully covered by clouds for all time 

277 within a given period, the preceding and the subsequent 8-day cloud-free SCP data for 

278 the same pixels estimated using Step 3 are employed to fill such a gap. As a result, an 

279 8-day SCP dataset without cloud cover could be produced using the above three steps.



280

281 3.3 Relationship between passive microwave SD product and SCP

282 Snow cover information with a high spatial resolution is a key factor and has been 

283 widely used as a spatial weight when redistributing passive microwave SD pixels in 

284 previous studies. These studies identified a positive correlation between the FSC and 

285 SD over the TP (Tang et al., 2016; Dai et al., 2018), indicating that the FSC can be used 

286 to determine the detailed spatial information for the passive microwave SD pixels. 

287 Therefore, the SCP generated from the FSC has the potential ability to redistribute 

288 passive microwave SD pixels.

289 To illustrate, we selected two typical regions with a large amount of snow in the 

290 TP. The 8-day mean SD and SCP values from 300 grid points during winter 2000 were 

291 randomly extracted for the western TP and for the southeastern TP, which are the two 

292 main snow-covered regions on the TP. Thus, a total of 600 grid points were sampled to 

293 test the relationship between the SD and SCP in the cold season. A simple linear 

294 regression model was then established based on these collected SCP and SD data. In 

295 each region, we found a significant positive relationship between the SD and SCP, as 

296 can be seen from the R values of 0.74 for the western TP and 0.88 for the southeastern 

297 TP (p<0.001 in both cases) (Fig. 5). Thus, the SCP was determined to be an appropriate 

298 factor for downscaling the coarse-resolution SD data used in this study.

299

300 3.4 Downscaling algorithms

301 3.4.1 Spatial downscaling algorithm



302 The above analysis suggests that a higher SCP value may indicate a higher SD value. 

303 Therefore, it is reasonable to use the SCP derived from the FSC product to improve the 

304 spatial resolution of the SD grids. To maintain the same temporal resolution for the SD 

305 and SCP, the total SD (SDsum) during an 8-day period dataset was produced by summing 

306 the daily SD data for each 8-day period by:

307

,𝑆𝐷𝑠𝑢𝑚 = ∑8
𝑖 = 1𝑆𝐷𝑖 (8)

308

309 The area of a 0.25° passive microwave SD pixel is 25 times that of an 0.05° SCP 

310 pixel. Thus, each 0.25° SD pixel was equally divided into 25 subpixels by taking into 

311 consideration the spatial weight derived from the 0.05° SCP in the same location. 

312 Dividing the sum of the 0.05° SCP in the extent of the 0.25° SD pixel by each 0.05° 

313 SCP pixel is an effective way to estimate each spatial weight that is used to redistribute 

314 the 0.25° SD pixels. In this case, the 8-day SDsum grids must be multiplied by 25 before 

315 multiplying by the subpixel-level spatial weight value. In this way, an 8-day SDsum 

316 dataset with the 0.05° resolution subpixel spatial information was produced for 2000–

317 2018 over the TP (Fig. 6). The equations of spatial downscaling algorithm are as 

318 follows:

319

,𝑊𝑠 =
𝑆𝐶𝑃𝑗

∑25
𝑗 = 1𝑆𝐶𝑃𝑗

= [𝑊11 ⋯ 𝑊15
⋮ ⋱ ⋮

𝑊51 ⋯ 𝑊55
]

(9)



(𝑆𝐷sum)𝑠𝑢𝑏 = 25 × 𝑆𝐷𝑠𝑢𝑚 × 𝑊𝑠 =

,[25 × 𝑆𝐷𝑠𝑢𝑚 × 𝑊11 ⋯ 25 × 𝑆𝐷𝑠𝑢𝑚 × 𝑊15
⋮ ⋱ ⋮

25 × 𝑆𝐷𝑠𝑢𝑚 × 𝑊51 ⋯ 25 × 𝑆𝐷𝑠𝑢𝑚 × 𝑊55
] (10)

320

321 where (SDsum)sub is the sum of the subpixel snow depth at 0.05° during an 8-day period, 

322 SDi is the snow depth on the ith day during an 8-day period (1≤i≤8), Ws is the spatial 

323 weight for redistributing the passive microwave snow depth pixel, and SCPj is the snow 

324 cover probability in the jth pixel in the area of each 0.25° snow depth pixel (1≤j≤25).

325

326 3.4.2 Temporal downscaling algorithm

327 In the process of downscaling the passive microwave SD, the advantage of its high 

328 temporal resolution has long been disregarded in previous studies. Using the ratio of 

329 daily SD to the 8-day SDsum, the daily temporal weight can be calculated to improve 

330 the temporal resolution of the 8-day SDsum dataset containing subpixel spatial 

331 information. A subpixel SD dataset with a daily temporal resolution during 2000–2018 

332 in the study region was produced by multiplying the 8-day SDsum subpixel dataset and 

333 each daily temporal weight. The flowchart of the temporal downscaling algorithm is 

334 shown in Fig. 7, and the equations are as follows:

335

,𝑊𝑡 =
𝑆𝐷𝑖

∑8
𝑖 = 1𝑆𝐷𝑖

= [
𝑆𝐷1

∑8
𝑖 = 1𝑆𝐷𝑖

⋯⋯
𝑆𝐷8

∑8
𝑖 = 1𝑆𝐷𝑖

]
(11)

(𝑆𝐷𝑖)𝑠𝑢𝑏 = (𝑆𝐷𝑠𝑢𝑚)𝑠𝑢𝑏 × 𝑊𝑡 =
[(𝑆𝐷𝑠𝑢𝑚)𝑠𝑢𝑏 × 𝑊1 ⋯⋯ (𝑆𝐷𝑠𝑢𝑚)𝑠𝑢𝑏 × 𝑊8] =

(12)



,[(𝑆𝐷𝑠𝑢𝑚)𝑠𝑢𝑏 ×
𝑆𝐷1

∑8
𝑖 = 1𝑆𝐷𝑖

⋯⋯ (𝑆𝐷𝑠𝑢𝑚)𝑠𝑢𝑏 ×
𝑆𝐷8

∑8
𝑖 = 1𝑆𝐷𝑖]

336

337 where (SDi)sub is the subpixel daily snow depth on the ith day, (SDsum)sub is the sum of 

338 the subpixel snow depth during an 8-day period, Wt is the temporal weight, and SDi is 

339 the snow depth on the ith day during an 8-day period (1≤i≤8).

340

341 3.5 Statistical metrics for assessing the SD product

342 The daily in-situ SD data measured at 92 meteorological stations of the China 

343 Meteorological Administration (CMA) were used to evaluate the accuracy of the new 

344 daily 0.05° SD product and the original 0.25° one for 2000–2010. For each product, the 

345 SD value of the grid in which the station is located was compared against that observed 

346 by the meteorological stations. Based on the elevations of the stations, the comparisons 

347 were also aggregated into four elevation zones with a 1000 m interval. The root-mean-

348 square-error (RMSE) and the mean-absolute-error (MAE) values were calculated to 

349 quantitatively evaluate the accuracy of these two products, i.e.,

350

,𝑅𝑀𝑆𝐸 =
1
𝑛∑𝑛

𝑖 = 1(𝑥𝑖 ― 𝑦𝑖)2 (13)

,𝑀𝐴𝐸 =
1
𝑛∑𝑛

𝑖 = 1|𝑥𝑖 ― 𝑦𝑖| (14)

351

352 where xi is the ith in-situ snow depth value, and yi is the ith passive microwave snow 

353 depth value.



354

355 4. Results

356 4.1 Validations of the original 0.25° SD product and the new 0.05° SD product

357 Fig. 8 shows the validation results of the new 0.05° and the original 0.25° SD data 

358 using the ground measured SD data. As seen, the RMSE and MAE values from the 

359 former are much smaller than those from the latter, indicating a significant 

360 improvement in the 0.05° SD product across the TP. For all 92 stations, the mean RMSE 

361 and MAE values of the new 0.05° SD product are 1.54 and 0.67 cm d-1, respectively. 

362 The spatial distribution for the RMSE and MAE of two SD products (Fig. 9) shows that 

363 the improvement of new SD estimates is more obvious in the eastern part of TP. For 

364 certain stations in the southeastern TP, however, the difference in the accuracy of these 

365 two products seems not obvious. This may be attributed to the inherent larger error in 

366 the original 0.25° SD product in this area where numerous forests are found.

367 Regarding the stations in different elevation zones (Table 2), the RMSE values of 

368 the new 0.05° SD product are all lower than those of the original 0.25° SD product. 

369 This is also true for the MAE values. The improvement is most obvious in the 3000–

370 4000 m a.s.l. elevation zone, in which the RMSE decreases from 3.22 to 2.30 m d-1 

371 (Table 2). The above validation suggests that our newly-developed SD product with a 

372 higher spatial resolution outperforms the original 0.25° SD product regarding the 

373 accuracy.

374

375 4.2 Spatial pattern of the SD over the TP from the new and original SD products



376 Fig.10 presents the spatial characteristics of the multiyear (2000–2018) mean SD 

377 from the new 0.05° and original 0.25° SD products over the TP. As can be seen, the 

378 two SD products exhibit similar spatial distribution characteristics. However, the new 

379 SD product with a 0.05° spatial resolution captures much more detailed information 

380 and provides more heterogeneous spatial distribution patterns compared to the original 

381 version. This is because the former assimilates the much spatial information of the SCP, 

382 the latter of which was derived from the MODIS with a high spatial resolution. The 

383 difference between these two products is most obvious in the snow-dominated regions, 

384 i.e., the southeastern TP as well as the Himalaya and Karakoram.

385 To further illustrate the strength of the new 0.05° SD product at the monthly scale, 

386 Figs. 11 & S2 further illustrate the spatial distribution of the multiyear (2000–2018) 

387 mean monthly SD across TP. As seen, a more explicit spatial pattern of SD across TP 

388 could be detected every month by the new 0.05° SD product. With this new 0.05° SD 

389 product, we could describe the spatial characteristic of SD in a more detailed manner. 

390 On the monthly scale, the spatial pattern of the multiyear (2000–2018) average SD over 

391 the TP differs significantly in the cold and warm seasons (Figs. 11 & S2). During the 

392 cold season, the large SD values mainly occur on the northwestern and southeastern 

393 TP, while the SD values in the inner TP are much smaller. During the warm season, 

394 there is little snow on most parts of the TP, except for the high-elevation areas of 

395 Karakorum, Kunlun, Himalaya, and Pamir, where a certain amount of snow still exists 

396 during the warm season. Note that although the 0.05° SD product has an improved 

397 spatial resolution, it may be less capable of presenting the spatial information about the 



398 snowpack in summer. This is mainly because the microwave data cannot efficiently 

399 detect the SD in regions with shallow SD values.

400

401 4.3 Seasonal cycle of the SD over the TP and its basins

402 The multiyear mean monthly SD averaged over the entire TP increases rapidly from 

403 September to January, leading to a peak monthly value of 3.54 cm mo-1 (Fig. 12m). 

404 This is followed by a gradual decrease until September. In general, the rate of increase 

405 of the monthly SD during September-January is obviously faster than the rate of 

406 decrease of the monthly SD during January-September, which suggests that the 

407 duration of the snow melting period is likely longer than the snow accumulation period 

408 over the TP.

409 Figs. 12a–l illustrate the seasonal cycle of the SD in 12 basins within the TP. In 

410 general, the lowest monthly SD occurs in July or August over the basins in the eastern 

411 TP, but for the basins in the western and inner TP, the lowest monthly SD occurs in 

412 September. For most basins that are influenced by the Asian Monsoon, the maximum 

413 monthly SD occurs in December or January. However, for the Amu Dayra, Indus, and 

414 Ganges, which are obviously impacted by the westerlies, the SD is large until April. 

415 The above analysis highlights that the monsoon and westerlies play important roles in 

416 controlling the intra-annual SD variations in the different basins across TP.

417

418 4.4 Trends in the SD over the entire TP and its basins

419 Fig. 13a shows the spatial pattern of the trends (2000–2018) in annual SD across 



420 the TP derived from the new 0.05° product. The SD increased significantly in some 

421 parts of the Tarim, upper Yangtze, Yellow, and Mekong River basins and the northern 

422 Himalayas, but it decreased significantly in some parts of the inner TP, eastern 

423 Brahmaputra, and the southern Himalayas. However, in most parts of TP, the trends of 

424 the annual SD were not significant during 2000–2018 (Fig. 13b). To further illustrate 

425 the strength of the new high-resolution SD data, we also show the spatial pattern of the 

426 trends in annual SD derived from the 0.25° product in Fig. S2. Although the spatial 

427 pattern of the linear trends derived from the 0.25° version is overall similar to those 

428 from the 0.05° product, the new data obviously provide a more explicit representation 

429 of the changes in SD across TP. Therefore, it is suggested that our newly-developed SD 

430 data could serve as a useful tool for investigating the spatial and temporal variations in 

431 snow over TP.

432 When averaged over the entire TP, the annual SD increased slightly with a rate of 

433 0.005 cm yr-1 (p > 0.05) during 2000–2018 (Fig. 14m). The annual SD generally 

434 increased during 2000–2008 and 2017–2018, and it decreased overall during 2008–

435 2017. It should be highlighted that the trend in the SD depends highly on the temporal 

436 period analyzed since there was a sudden jump in the SD in 2018 (which is also the 

437 largest annual SD during these 19 years). For this reason, the trend in TP-averaged 

438 annual SD became a slight decreasing one with a value of −0.009 cm yr−1 (p > 0.05) 

439 during 2000–2017 (Fig. S3m).

440 Figs. 14a–l also illustrate the linear trends in the annual SD during 2000–2018 for 

441 12 basins within the TP. The annual SD increased in most of the basins in the TP, except 



442 the Amu Dayra, Ganges, Brahmaputra, and Inner TP, in which the annual SD decreased 

443 to some extent. However, the trends are mostly insignificant, except for that of the 

444 Tarim Basin, in which the annual SD increased significantly at a rate of 0.05 cm yr-1 

445 (p<0.05) during the 19-year study period. When switching to the period of 2000–2017 

446 (Fig. S3), trends in basin-scale annual SD change to some extent. In particular, trends 

447 in Indus, Salween, Mekon, Yangtze, and Qaidam become decreasing, though such 

448 trends are still not statistically significant. 

449

450 5. Discussions

451 Although the SD dataset was improved, with a better resolution of 0.05°, the error 

452 of the representativeness is inevitable when validating pixel-based SD products based 

453 on ground-based SD measurements. This is because a sample point is less capable of 

454 representing a pixel, especially in regions with a heterogeneous underlying surface 

455 (Xiao et al., 2018). To improve the reliability of the validation results of the SD 

456 products derived from remote sensing satellites across the entire TP, progress should 

457 be made not only in developing downscaling algorithms but also in enhancing advanced 

458 sensors.

459 Although the SD retrieval method has been calibrated and developed using several 

460 versions (Chang et al., 1987; Foster et al., 1997; Che et al., 2008; Jiang et al., 2014), 

461 accurate knowledge of the physical properties of the snowpack, e.g., snow temperature, 

462 snow density, snow grain size, and snow water content, is not explicitly and 

463 comprehensively considered used in most of the retrieval methods using the passive 



464 microwave remote sensing data (Dietz et al., 2012). Thus, in future studies, more 

465 dynamic SD retrieval methods should be developed to consider the various effects of 

466 these physical properties to improve the accuracy of the original SD products derived 

467 from passive microwave brightness temperature data.

468 It is more suitable to use passive microwave remote sensing to estimate the snow 

469 water equivalent rather than the SD. This is mainly because the microwave brightness 

470 temperature of the snowpack is affected by both SD and snow density (Kelly et al., 

471 2003). However, most of these algorithms involved the relationship between the SD 

472 value and the passive microwave brightness temperature (Chang et al., 1987; Foster et 

473 al., 1997; Che et al., 2008; Jiang et al., 2014). Therefore, it is believed that these 

474 algorithms may also be appropriate for estimating the snow water equivalent after slight 

475 modifications. In this case, more attention should be paid to building more snow water 

476 equivalent measurement sites because of the limited global samples available for 

477 validation.

478 Several factors may impact the trend of the snow parameters over the TP to some 

479 extent, such as the study area and study period. The effects of the size of the TP 

480 coverage on the trends of the snow parameters have long been disregarded. For example, 

481 the TP’s extent in China is less than the entire TP region in this study (Zhang et al., 

482 2013). It is worthwhile to highlight the SD in certain areas of the western TP (e.g., the 

483 Karakoram) is higher than other parts of the TP, thus making them a significant 

484 contributor to the trend in the TP-averaged annual SD. A good example of this is that 

485 the seasonal cycle of the SD over the entire TP is influenced by the high SD values in 



486 the western TP to a large extent, which is especially true in summer. Additionally, the 

487 trend in the annual SD is also very sensitive to the length of the study period, as can be 

488 seen from the comparisons between Fig. 14 and Fig. S3. Although the SD in most of 

489 the basins in the TP increased slightly from 2000 to 2018, it decreased slightly from 

490 2000 to 2017. Different trends during these two different periods are also true for the 

491 TP-averaged annual SD, though both trends are not statically significant. 

492

493 6. Conclusions

494 By combining a high temporal resolution passive microwave SD dataset with a high 

495 spatial resolution cloud-free SCP dataset, this study developed a spatial-temporal 

496 downscaling method to successfully downscale the 0.25° SD dataset to a 0.05° SD 

497 product for the TP during 2000–2018. The validation against 92 ground meteorological 

498 stations demonstrates that the new 0.05° SD product significantly improves upon the 

499 original 0.25° version. While the present study only focuses on the TP, the spatial-

500 temporal downscaling method proposed here could be applied to other snow-dominated 

501 regions (e.g., the high latitudes) to produce new SD data with an improved spatial 

502 resolution.

503 Based on the new 0.05° SD product, we found that SD is typically higher in the 

504 southeastern TP as well as the Himalaya and Karakoram, while the lowest SD value 

505 occurs mainly in the inner TP.  For the seasonal cycle of SD, the maximum monthly 

506 SD occurs in December or January for most basins that are influenced by the Asian 

507 Monsoon. However, for the Amu Dayra, Indus, and Ganges, which are obviously 



508 impacted by the westerlies, the SD is large until April. This indicates that the monsoon 

509 and westerlies play important roles in controlling the intra-annual SD variations 

510 patterns across TP.

511 During 2000–2018, there was no significant trend in annual SD for most parts of 

512 TP. The TP-averaged annual SD showed a slight increasing trend (0.005 cm a-1, p > 

513 0.05). On the basin scale, the annual SD slightly decreased in the Amu Dayra, Ganges, 

514 Brahmaputra, and Inner TP, but an opposite trend was observed in the rest of the basins 

515 within TP. It should be noted that the trends reported here depend greatly on the study 

516 period since there was a sudden jump in the SD for the last year (i.e., 2018) we analyzed. 

517 However, trends are still not statistically significant after removing this year’s data.

518 The demand for high-resolution remote sensing-based SD datasets can be met to 

519 some extent by the current SD data downscaling algorithms. Therefore, it is believed 

520 that the new fine-resolution SD dataset not only provides an accurate data source for 

521 estimating snow water storage and its variations over the TP, but also presents new 

522 opportunities for hydrological and climatological studies related to the seasonal 

523 snowpack. More importantly, the response mechanism of SD to ongoing climate 

524 change on the TP is expected to be clarified in the future by using such an improved 

525 SD dataset.
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710 TABLES 

711 Table 1 The attributes and reclassified values of the MOD10C1 (Terra) and 

712 MYD10C1 (Aqua) products.

Attributes Value Reclassified values in 

clear index

Reclassified values in 

fractional snow cover

Fractional snow cover 0–100 / 0–100

Clear index value 0–100 0–100 /

Lake ice 107 100 0

Inland water 237 100 0

Ocean 239 100 0

Cloud obscured water 250 100 0

Data not mapped 253 0 0

Filled 255 0 0

713



714 Table 2 The RMSE and MAE values of the newly-developed 0.05° and the original 

715 0.25° SD products in the different elevation zones

RMSE (cm d-1) MAE (cm d-1)
Elevation (m 

a.s.l.)
0.25° SD 

product

0.05° SD 

product

0.25° SD 

product

0.05° SD 

product

1000–2000 0.77 0.76 0.22 0.19

2000–3000 1.98 1.16 1.07 0.54

3000–4000 3.22 2.30 1.78 1.08

4000–4800 1.44 1.29 0.63 0.45

All stations 2.15 1.54 1.12 0.67

716



717 FIGURES CAPTIONS

718 Fig. 1 Spatial domain of the Tibetan Plateau and its 12 basins. The unfilled circles 

719 denote the 92 meteorological stations of the China Meteorological Administration 

720 where the snow depth was observed.

721 Fig. 2 Flowchart of estimating the cloud-free snow cover probability from the MODIS 

722 Terra snow cover product during 2000–2001.

723 Fig. 3 Flowchart of estimating the cloud-free snow cover probability from the MODIS 

724 Terra and Aqua snow cover products during 2002–2018.

725 Fig. 4 Flowchart and the results of the SCP estimation based on the fractional snow 

726 cover and clear index during 1–8 January 2003 using the MODIS Terra and Aqua 

727 products.

728 Fig. 5 Relationship between the SD and SCP based on 300 grid points during winter 

729 2000 in the (a) western and (b) southeastern TP.

730 Fig. 6 Flowchart of the spatial downscaling method.

731 Fig. 7 Flowchart of the temporal downscaling method.

732 Fig. 8 (a–b) RMSE and (c–d) MAE values of the newly-developed 0.05° and the 

733 original 0.25° SD products when validated against the ground-observed SD data from 

734 92 meteorological stations across the TP.

735 Fig. 9 Spatial patterns of the (a–b) RMSE and (c–d) MAE of the newly-developed 0.05° 

736 and the original 0.25° SD products from the validations against the ground-observed 

737 SD data from 92 meteorological stations across the TP.

738 Fig. 10 Spatial pattern of the multiyear (2000–2018) mean annual SD from the (a) 



739 original 0.25° SD product and (b) newly-developed 0.05° SD product over the TP. 

740 Fig. 11 Spatial pattern of the multiyear (2000–2018) mean monthly SD from September 

741 to February over the TP based on the newly-developed 0.05° and the original 0.25° SD 

742 products.

743 Fig. 12 Multiyear (2000–2018) mean seasonal cycle of the SD over the TP and its 12 

744 basins based on the newly-developed 0.05° product.

745 Fig. 13. The spatial pattern of the (a) linear trends (2000–2018) in annual SD from the 

746 newly-developed 0.05° product and (b) significance test across the Tibetan Plateau. The 

747 trend is regarded as statistically significant when p < 0.05.

748 Fig. 14 The interannual variations and the linear trends of the basin-scale (a–l) and the 

749 TP-averaged (m) annual SD during 2000–2018.
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