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A B S T R A C T

An Ms 6.0 earthquake struck Changning county, Sichuan basin, SW China on 17 June 2019, which caused huge
casualties and economic losses. Four Ms greater than 5.0 events subsequently occurred around the Changning
source area, three of which occurred within one week. In order to better understand the mechanism of these
moderate-sized earthquakes, we determine 3-D high-resolution velocity models around the source area si-
multaneously relocating earthquakes using double-difference tomography. In the present study, we use a total of
53,487 P-wave and 52,527 S-wave arrival times from 8818 events recorded at 39 seismic stations. Our results
show that focal depths of the Changning mainshock and most aftershocks are ~5–10 km, and they form a fault
plane with a steep dip angle. Most earthquakes are underlain by the zone with low Vp, low Vs, and high Vp/Vs
anomalies, reflecting the existence of fluids there. These results suggest that the Changning mainshock and other
moderate-sized earthquakes might be associated with the influence of fluids that could decrease effective normal
stress on the fault planes. These fluids might be related to the hot and wet mantle upwelling in the big mantle
wedge due to the deep subduction of the Indian plate down to the mantle transition zone. A clear high-to-low
velocity transition zone is observed at ~10 km depth beneath the Gongxian and Xingwen swarms, which
matches well with the detachment layer revealed by deep seismic soundings in the area. All these results suggest
that the structural contrast could control the mainshock generation and aftershock extension.

1. Introduction

On 17 June 2019, an Ms 6.0 earthquake struck Changning country,
southern margin of the Sichuan basin, Southwestern China (Fig. 1). The
China Earthquake Networks Centre reported that the epicenter was
located at 28.34°N, 104.90°E with a focal depth of 16 km, approxi-
mately 269 km southeast of Chengdu city in the Sichuan basin (Fig. 1).
The devastating earthquake caused severe losses of lives and properties.
Furthermore, aftershocks lasted for more than one week, and there had
been a total of 202 aftershocks with magnitude larger than 2.0, in-
cluding 4 Ms ≥ 5.0, 5 Ms 4.0–4.9, and 46 Ms 3.0–3.9 aftershocks till 4
July 2019 (http://www.cea.gov.cn/cea/dzpd/index.html).

The Changning source area (104oE-105.5oE, 27.7oN-28.9oN), si-
tuated in the southeast segment of North-South Seismic Belt, is located
on the trip junction of the Sichuan basin, Sichuan-Yunnan block, and
Yangtze block (Fig. 1). Under the far distance stress influence from the
Songpan-Ganzi block to the northwest and the Sichuan-Yunnan block to
the west, as well as the extrusion-uplifting actions from the Sichuan
basin to the north and the Yangtze block to the south, the study area has

being become one of the most seismically hazard areas in recent years
(e.g., Deng et al., 2002; Xu et al., 2016; Fan et al., 2018; He et al., 2011;
Lei et al. 2019a,b). Around the study area, many large earthquakes
occurred recently, such as the 2008 Wenchuan Ms 8.0 earthquake and
2013 Lushan Ms 7.0 earthquake on the Longmenshan fault zone to the
northwest (e.g., Lei and Zhao, 2009; Lei et al., 2014; Deng et al., 2014;
Pei et al., 2010) and the 2014 Ludian Ms 6.5 earthquake on the Zhao-
tong-Ludian fault to the south (e.g., Fang et al., 2015; Zhang et al.,
2014; Xie et al., 2015) (Fig. 1), in addition to the 8 August 2017
Jiuzhaigou Ms 7.0 earthquake on the easternmost edge of the Kunlun-
shan fault (e.g., Liang et al., 2018; Tung et al., 2019). Such a study area
is located in the big mantle wedge (BMW) formed by the deep sub-
duction and long-term stagnancy of the Indian plate in the mantle
transition zone (e.g., Lei et al., 2009; Lei et al. 2019a; Lei and Zhao,
2016).

In such a small-scale tectonic unit of the Changning source area,
geological features are very complicated, which are mainly controlled
by the co-existence of the NE-SW and NW-SE oriented faults char-
acterized by multi-stage activities (e.g., Deng et al., 2002; Xu et al.,
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2016; Fan et al., 2018; He et al., 2011; He et al., 2019). As the major
structural elements of the earthquake source area, the NW-SE
Changning anticline is the narrowest in the Xuyong area and becomes
wider northwestward when it passes through Gongxian and Gaoxian
(He et al., 2011; He et al., 2019). Moreover, the anticline slightly bends
southwestward in the northwest terminal (He et al., 2011; He et al.,
2019). Along the Changning anticline, a series of secondary faults and
related folds were generated due to the axis plane fracturing, where an
east-west oriented band-like shape extends with a mosaic distribution
of anticlines and synclines from the north to the south including
Xiangling syncline, Shizitan anticline, Shuanghechang anticline,
Changning anticline, Luochang syncline, and Jianwu syncline in and
around the Changning source area (Fig. 1). Meanwhile, the Cambrian,
Ordovician, Silurian, Permian, Triassic and Jurassic strata are well ex-
posed sequentially from the nucleus to the periphery of the Changning
anticline (He et al., 2019; Wang et al., 2015). In recent years, with the
rapid development of shale gas production and hydraulic fracturing
studies close to the Changning earthquake, the study area of interests
remains seismically active (Fig. 2a). Less than 20 km south away from
the Changning mainshock, an Ms 5.7 earthquake occurred in Xingwen
on 16 December 2018 and an Ms 5.3 earthquake followed in Gongxian
on 3 January 2019 (Fig. 2b; Lei et al., 2017; Lei et al. 2019b). Till 4 July
2019, four moderate-sized strong earthquakes (Ms > 5.0) occurred in
the area after the 17 June 2019 Changning mainshock (Yi et al., 2019;
Long et al., 2020). The generation mechanism of these earthquakes still
remains debated, and social public and local government have raised
extensive concerns on it.

To better understand the mechanism of the 2019 Changning Ms 6.0
mainshock and moderate-sized aftershocks, we present 3-D high-re-
solution P-wave (Vp) and S-wave (Vs) velocity models around the study
area using the double-difference seismic tomography (Zhang and
Thurber, 2003; Zhang et al., 2009) by a large number of P- and S-wave
arrival times recorded at 39 China Earthquake Administration stations
from 1 December 2018 to 4 July 2019. Our models provide new lights
on the generation mechanism of the Changning earthquake sequences.

2. Data and method

In this study, we adopt the double-difference tomography method
(Zhang and Thurber, 2003; Zhang et al., 2009) for velocity inversion
and earthquake relocation. In addition to absolute arrival times, dif-
ferential times between pairs of earthquakes are also used to get high-
resolution Vp and Vs structures as well as earthquake locations. By
taking differences between travel times of nearby event pairs, the errors
outside the source area with similar ray paths can be largely reduced,
and thus the structure near the Changning source area can be reason-
ably resolved. Additional details of this method can be found in Zhang
and Thurber (2003).

In the present study, we collect earthquakes that were recorded at
more than 6 seismic stations. Because we are mainly concerned about
the velocity structure around the 2019 Changning source area, we
choose only the arrival times with epicentral distances shorter than
250 km. Finally, a total of 39 stations (Fig. 2a) and 8818 earthquakes
from 1 December 2018 to 4 July 2019 (Fig. 2), including 53487 P-wave
and 52,527 S-wave absolute travel times (Fig. 3a), are selected in the
present study. The gap angles of the selected stations are less than 30°
(Fig. 2a), indicating good azimuthal coverage of seismic stations to
obtain high-quality earthquake relocations and tomographic images. In
addition, there are ten seismic stations with epicentral distance less
than 50 km (Fig. 2b), indicating a strong constrain on focal depth. To
obtain the double difference data, we set a maximum distance between
event pairs to 4 km. The center of the coordinate system is set up at the
point of 28.3oN and 104.8oE and grid spacing of 0.1° × 0.1° in the X
and Y directions (Fig. 2b) is used in the inversion. In the Z direction, the
layer depth is positioned at depths of 0, 2, 4, 7, 10, 14, 18, and 38 km.
The starting 1-D velocity model (Fig. 3b) is constructed using previous
results (Lei et al. 2019b; Zhang et al., 2014). The 3-D Vp and Vs models
and earthquake relocations are jointly inverted through ten iterations.
In consequence, we obtain 6833 relocated earthquakes, which have the
average relative errors of 0.161 km in latitude, 0.157 km in longitude
and 0.249 km in depth, respectively. The root-mean-square travel-time
residual is significantly reduced from 0.17 s before to 0.04 s after the

Fig. 1. (a) A map of major tectonics in the study area.
Blue stars represent earthquakes with magnitudes
greater than 6.0 that occurred around the study area
in recent decades, including the 2008 Wenchuan Ms
8.0 earthquake (2008 WC Ms 8.0), 2013 Lushan Ms
7.0 earthquake (2013 LS Ms 7.0), and 2014 Ludian
Ms 6.5 earthquake (2014 LD Ms 6.5), respectively.
The red star denotes the 2019 Changning Ms 6.0
mainshock (2019 CN Ms 6.0). The beach ball shows
focal mechanism solution of 2019 Changning Ms 6.0
mainshock (Liang et al., 2020). Brown solid lines
denote major active faults (Deng et al., 2002). LMSF,
the Longmenshan fault zone; LQSF, the Long-
quanshan fault; MYF, the Mabian-Yanjin fault; SLF,
the Shaotong-Ludian fault; HYSF, the Huayingshan
fault. (b) Major geological settings around the 2019
Changning Ms 6.0 mainshock. Black solid lines de-
note major anticlines, while black dashed lines are
major synclines (Yi et al., 2019). (c) Location of the
study area. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 2. (a) Distribution of seismic stations (blue
triangles) and events (black crosses) used in the
present study. The red star represents the 2019
Changning Ms 6.0 mainshock, and the yellow stars
denote the recent aftershocks with magnitudes
greater than 5.0, whereas white stars numbered 1
and 2 are the 2019 Ms 5.3 Gongxian and the 2018
Ms 5.7 Xingwen earthquake, respectively. Black
dots are the grid-points that are set in the model.
Brown solid lines denote major active faults in the
study area (Deng et al., 2002). (b) The magnified
Changning source area in the present study, which
is framed by the red lines in (a). All the events are
roughly divided into three swarms by the white el-
lipses, Changning swarm (CNS), Gongxian and
Xingwen swarms (GXS), Luobiao swarm (LBS), re-
spectively. White solid lines denote Changning an-
ticline (CNA), Shuanghechang anticline (SHCA),
and Shizitan anticline (SZTA), whereas white dotted
lines are Jianwu syncline (JWS), Luochang syncline
(LCS), and Xiangling syncline (XLS) (Yi et al., 2019).
Other symbols are the same as in (a). (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)
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inversion. The Vp/Vs ratio is directly obtained by dividing Vp by Vs in
the same grid node in the models (Zhang et al., 2009; Guo et al., 2018).

3. Results

3.1. Resolution analyses

To examine the ray coverage in the study area and the resolution
scale of our tomographic model, we perform many checkerboard re-
solution tests by adopting different grid intervals. Due to the scope of
the paper, here we only show the test results for Vp and Vs velocity
models with grid intervals of 0.15° × 0.15° and 0.10° × 0.10° in the
horizontal directions and at depth layers of 2, 4, 7, 10, 14 and 18 km
(Fig. 4). Alternatively negative and positive velocity anomalies of up to
6% are assigned to the 3-D grid nodes in the modeling space in the
initial model. Random noise with zero mean and a standard deviation
of 0.2 s is added to the synthetic P- and S-wave travel times to account
for data errors. Output models are obtained through inversions of the
synthetic data as the same number of seismic stations, earthquakes and
ray paths used in the real data set. By comparing the inverted and input
images of the checkerboard model, it is easy to understand where the
resolution is good and where it is poor.

We express our output models using the ratio way (Lei and Zhou,
2002; Lei and Zhao, 2005, 2007) by dividing the amounts of inverted
velocity anomalies by those in the initial models. Hexagons denote the
grid nodes where the pattern of the input velocity anomalies is correctly
recovered after the inversion, that is, fast anomalies in the input model
are recovered to be fast, and slow ones in the input model are recovered
to be slow after the inversion. The size of the hexagon denotes the ratio
of the inverted amplitude of the velocity anomaly to the value of the
input velocity anomaly. The grid nodes with 100% values are thought
to be recovered perfectly. From Fig. 4, we can see that, except for Vp
model at 18 km depth and Vs model at 7 and 18 km depths, both Vp and
Vs velocity anomalies are generally recovered in the model with grid
spacing of 0.15°×0.15°. Although the anomalies of both Vp and Vs
models with grid spacing of 0.10° × 0.10° in the horizontal directions
are not completely recovered, those around the Changning, Gongxian
and Xingwen and Luobiao swarms are generally retrieved (Fig. 4).

To further understand the advantage of the ratio way, here we show
an example for comparing two ways to present the results of the
checkerboard resolution tests along two vertical cross sections parallel
and perpendicular to the Changning swarm (Fig. 5). One is the con-
ventional way as shown in Fig. 5(c, d, g, h), in which open and solid
circles show slow and fast velocity anomalies in the output models.

However, sometimes it is uneasy to discern if the checkerboard pattern
is recovered correctly or not, in particular, for the marginal parts of the
study area. Thus, we adopt the ratio way (Fig. 5e, f, i, j; Lei and Zhou,
2002; Lei and Zhao, 2005), which is the same as that in Fig. 4. After
comparison, it can easily be seen from Fig. 5(e, f, i, j) that, except for
the areas on the margins of the models having lower resolution, the
Changning source area shows much high resolution. In particular, for
the cross section along the Changning swarm having an implicated
pattern of velocity anomalies in the input model (Fig. 5a), the ratio way
is much easier to judge where the grid nodes are recovered correctly
(Fig. 5e, i). These results suggest that the main structural features
around the Changning source area are reliable, which enable us to
discuss the mechanism of the 2019 Changning mainshock and mod-
erate-sized aftershocks.

3.2. Tomographic images

Fig. 6 shows our relocated earthquakes (see Appendix A in the
Supplementary Interactive Plot Data) and tomographic images of Vp, Vs
and Vp/Vs (see Appendix B in the Supplementary Interactive Plot Data)
in map view. All relocated earthquakes are mainly focused on the an-
ticlines and synclines. The Changning swarm is located around the
Shizitan, Shuanghechang, and Changning anticlines, and the Gongxian
and Xingwen swarms are closely related to the Luochang syncline,
whereas the Luobiao swarm is associated with the Jianwu syncline. Our
Vp, Vs and Vp/Vs models show strong lateral heterogeneities around
the 2019 Changning source area (Fig. 6). At 2–4 km depths, the
Changning swarm occurred in the zones with low Vs and low Vp/Vs and
in the transition zone of high-to-low Vp anomalies, whereas the
Gongxian, Xingwen, and Luobiao swarms occurred in low Vp, high Vs
and low Vp/Vs anomalies (Fig. 6a, b, g, h, m, n). At 7–10 km depths, the
Changning, Gongxian, Xingwen, and Luobiao swarms are all located in
the zones with low Vp, high Vp and low Vp/Vs anomalies (Fig. 6c, d, i,
j, o, p). At 14–18 km depths, all these swarms are situated in the zone
with a complicated pattern of anomalies, but the zones mainly illustrate
obvious low Vp, high Vs, and high Vp/Vs anomalies (Fig. 6e, f, k, l, q, r).

To better understand the mechanism of the 2019 Changning
mainshock and moderate-sized aftershocks, we plot several vertical
cross-sections (Figs. 7-9). Cross sections AA’ and BB’ passing through
the Changning swarm are parallel and perpendicular to the trend of the
Changning anticline, respectively (Fig. 7). The earthquake hypocenters
are generally located within a narrow zone with low Vp, high Vs and
low Vp/Vs northwestward extending from the shallow (at ~2 km
depth) crust beneath the Changning arch core to the middle-lower (at

Fig. 3. (a) Observed travel times (in second) versus
epicentral distances (in km) for P- wave (blue dots)
and S-wave (red dots). (b) The initial 1-D P- (blue
line) and S- wave (red line) velocity models, which
are constructed from previous studies (e.g., Lei et al.
2019b; Zhang et al., 2014), adopted for the 3-D
tomographic inversions. Vp/Vs is fixed to be 1.73.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. Results of Vp and Vs checkerboard resolution tests in map view. In the input model, the velocity anomaly is set to ± 6%, relative to the initial 1-D velocity
model as shown in Fig. 3b. The first and second columns show Vp and Vs output models with grid spacing of 0.15° × 0.15° in the horizontal directions, whereas the
third and fourth columns show the models with grid spacing of 0.10° × 0.10° in the horizontal directions. Depth intervals are shown on the left. Hexagons and crosses
denote the grid nodes where the checkerboard pattern is recovered correctly and wrongly, respectively. The hexagons with values of 100% show the grid nodes
where the checkerboard pattern is recovered perfectly. The scale for the degree of recovery is shown at the bottom. The red star represents the 2019 Changning Ms
6.0 mainshock, and yellow stars denote recent aftershocks with magnitudes greater than 5.0, whereas white stars numbered 1 and 2 are the 2019 Ms 5.3 Gongxian
and 2018 Ms 5.7 Xingwen earthquakes, respectively. Brown solid lines denote major anticlines, whereas brown dotted lines are major synclines (Yi et al., 2019). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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~20 km depth) crust beneath the Shuanghechang and Shizitan anti-
clines, which is well consistent with the extension direction of the
Changning moderate-sized aftershocks (Fig. 7a-c). However, a high Vs
and low Vp/Vs anomaly appears around the Changning swarm along
and across the Changning anticline (Fig. 7b, c, e, f). As shown in Fig. 7d-
f, most relocated earthquakes can be identified as a nearly vertical
distribution, which is highly consistent with the focal mechanism so-
lution, suggesting that the seismogenic fault of Changning mainshock
has a high dip with a predominantly NW-SE oriented strike-slip

component simultaneously having a minor left-lateral thrust (Fig. 1;
Liang et al., 2020). Cross sections CC’ and DD’ pass through the
Gongxian and Xingwen swarms, and most of the earthquakes occurred
in the zone with low Vp, high Vs, and low Vp/Vs anomalies (Fig. 8). It
should be noted that both low Vp and Vs discontinuities are observed at
10–15 km depths, which match well with the detachment layer geo-
metrically revealed by the previous seismic sounding profile across the
Gongxian and Xingwen swarms (He et al., 2019). Cross section EE’
passes through the Luobiao swarm, which illustrates that most

Fig. 5. Results of a checkerboard resolution test for
Vp and Vs along cross-sections AA’ and BB’. The
topography is shown on the top. (a, b) Vp and Vs
input models with grid spacing of 0.10° × 0.10° in
the horizontal directions, respectively. Open and
solid circles show slow and fast velocity anomalies
with ± 6% perturbations at the grid nodes, the
scale of which is shown on the right of (b). (c, d) Vp
output models. Open and solid circles show the in-
verted results of slow and fast velocity anomalies at
the grid nodes after the inversion. The velocity
perturbation scale is shown on the right of (d). (e, f)
The same as (c, d) but for recovery degree of Vp
anomalies. Hexagons and crosses denote the grid
nodes where the checkerboard pattern is recovered
correctly and wrongly, respectively. The hexagons
with values of 100% show the grid nodes where the
checkerboard pattern is recovered perfectly, and the
crosses with values of −100% show the grid nodes
where the checkerboard pattern is not recovered
completely. The scale for the degree of recovery is
shown on the right of (f). (g, h) The same as (c, d)
but for Vs. (i, j) The same as (e, f) but for Vs.
Locations of cross-sections are shown at (k). Other
symbols are the same as those shown in Figs. 1 and
2.
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earthquakes occurred at 2–12 km depths in an NW-SE direction cluster
with low Vp, high Vs and low Vp/Vs anomalies (Fig. 9). Nevertheless, it
can be seen from Figs. 7–9 that all the swarms, including the
Changning, Gongxian, Xingwen, and Luobiao swarms and moderate-
sized aftershocks, occurred in the zone with low Vp, high Vs, and low
Vp/Vs anomalies, but they are underlain by the zone with low Vp, low
Vs and high Vp/Vs anomalies.

4. Discussion

Our present results clearly show that the source area of the
Changning mainshock and moderate-sized aftershocks are underlain by
the anomalous zone with low Vp, low Vs and high Vp/Vs features below
10 km depth (Figs. 6–9). These anomalies possibly indicate the ex-
istence of a fluid-filled fractured rock matrix (Mishra et al., 2008; Singh
et al., 2012), which may have contributed to the initiation of the
Changning mainshock and moderate-sized aftershocks. Such a similar
structure could also be detected under other hypocenters in the world,
such as the 17 January 1995 Kobe earthquake (M 7.2) in Japan, the 26
January 2001 Bhuj earthquake (M 7.6) in India, and the 28 July 1976
Tangshan (M 7.8) and 12 May 2008 Wenchuan (M 8.0) earthquakes in
China (e.g., Zhao et al., 1996; Mishra and Zhao, 2003; Mishra et al.,
2008; Lei et al., 2008; Lei and Zhao, 2009). Such an anomalous zone
could be related to the influence of fluids that may affect the long-term
structural and compositional evolution of the fault zone, change the
strength of the fault zone, and alter the local stress regime (Sibson,
1992; Hickman et al., 1995). These influences could have enhanced
stress concentration in the seismogenic layer leading to mechanical
failure and the nucleation of these earthquakes. Another possibility is
that when fluids enter the fault zone, they may decrease the effective
normal stress across the fault planes to trigger the earthquakes (e.g.,
Bruhn and Schultz, 1996; Lei and Zhao, 2009).

In addition to the lower crustal channel flow (e.g., Royden et al.,
1997; Royden et al., 2008), there could be several other sources of
fluids in the crust, such as the dehydration of hydroxyl-bearing minerals
in the crust, fluids trapped in pore spaces, and meteoric water (e.g.,
Zhao et al., 2002; Lei et al., 2012) as well as the water injection in the
Changning salt mine area (e.g., Lei et al., 2017; Lei et al. 2019b; Sun
et al., 2017). Furthermore, we cannot rule out the possibility that, in the
Changning source area, the fluids could be from the upper mantle. The
Changning mainshock is situated in eastern Tibet, under which there is
a BMW structure (e.g., Lei et al., 2009; Lei et al. 2019a; Lei and Zhao,
2016). Under the Burma arc, the Indian plate has subducted down to
the mantle transition zone, and in the mantle transition zone it moved
northward to the Kunlunshan fault zone and eastward to the Xiaojiang
fault zone, which formed the BMW structure (e.g., Lei and Zhao, 2016;
Lei et al. 2019a). This result has been supported by the receiver func-
tion analyses that show the thickened mantle transition zone in the
similar area (e.g., Hu et al., 2013; Shen et al., 2011). In the BMW
structure, there exists the hot and wet mantle upwelling due to the
dehydration of stagnant plate in the mantle transition zone, due to a
large amount of wet sedimentary materials being dragged down to the
mantle transition zone by the subducting plate (Regenauer-Lieb et al.,
2001) and/or the corner flow caused by the subduction of the Indian
plate (Lei et al., 2009; Lei et al. 2019a). Similarly, the 1995 Kobe
earthquake could be related to the dehydration of the oceanic crust on
the top of the subducting Philippine Sea plate at 50–60 km depth (Zhao

et al., 1996). The 1976 Tangshan and 1668 Tancheng earthquakes
might be associated with the hot and wet mantle upwelling in the BMW
structure formed by the westward deep subduction of the Pacific plate
down to the mantle transition zone under eastern China (e.g., Lei and
Zhao, 2005, 2006; Lei et al., 2008; Lei et al., 2020).

It should be noted that both low Vp and low Vs velocity dis-
continuities are observed at depths of 10–15 km along cross section CC’
(Fig. 9), which match well with the detachment layer geometrically by
previous seismic sounding profile in this area (He et al., 2019). In-
tegrating with the well-tie seismic cross-section results (He et al., 2019),
our results suggest that the velocity discontinuity is mainly sand-
mudstone interbeded with silty-sandstone layers. Such layers have re-
latively poorly compressive and shearing strength properties, which are
mainly characterized by quasi-plastic mechanisms in the deformation
processes. The detachment layer could adjust the structure between the
upper and lower strata. Simultaneously, the Luobiao swarm with small
earthquakes preferentially occurred within the zones around low-Vp
and high-Vs zones at depths of 2–12 km. High-resolution velocity
models and precisely relocated earthquakes indicate that the occur-
rence of small earthquakes is also well correlated with structural var-
iations. Similarly, the source area of the Changning, Gongxian and
Xingwen swarms also has such a structural feature (Figs. 7 and 8). Our
results suggest that strong structural variations control the structural
heterogeneity and the occurrence of the Changning mainshock and its
aftershocks.

Last but not least, our precisely relocated earthquakes show that the
aftershocks have a multiple-banding distribution in the source area,
that is, earthquakes are not restricted to one or more specific tectonic
zones (Fig. 6). Some moderate-sized aftershocks (Ms > 5.0) are con-
centrated on the Changning anticline at depths of 5–10 km, where there
is a stable pre-Sinian crystalline basement (He et al., 2019). Above these
moderate-sized earthquakes, a series of small aftershocks (Ms < 5.0)
tend to be activated in the shallow crust, due to the upward intrusion of
fluids along the anticline and syncline structures in the crust from the
upper mantle in the BMW structure. This may explain why many
earthquake swarms occurred in the Changning source area. Such a
structural feature is well similar to those in the source areas of the 2008
Wenchuan and 1976 Tangshan earthquakes (e.g., Lei et al., 2008; Lei
and Zhao, 2009; Xu and Lei, 2020).

5. Conclusions

In this study, we obtain high-resolution Vp, Vs, and Vp/Vs models
and precisely relocated earthquakes around the 2019 Changning source
area using a number of P- and S-wave arrival times. Our results show
that focal depths of the Changning mainshock and its aftershocks are
approximately above 10 km, and small earthquakes form a steep dip
fault plane. All these earthquakes are underlain by low Vp, low Vs, and
high Vp/Vs anomalies, indicating that the fluids could play an im-
portant role in enhancing stress concentration in the seismogenic layer
of the shallower crust leading to mechanical failure and the nucleation
of these earthquakes. These fluids could be associated with the hot and
wet mantle upwelling in the BMW formed by the deep subduction of the
Indian plate down to the mantle transition zone. A clear velocity dis-
continuity is observed at ~10–15 km depths beneath the Gongxian and
Xingwen swarms, which matches well with the detachment layer by
seismic sounding profiles in the region, suggesting that the structural

Fig. 6. Tomographic images of Vp (the first column) and Vs (the second column) and Vp/Vs (the third column) around the Changning source area at different depths
in map view. Depth values are shown at the bottom-right corner of each panel. Vp and Vs are shown as velocity perturbations, relative to the initial velocity models as
shown in Fig. 3b. The red color denotes low Vp, low Vs, and high Vp/Vs, respectively, whereas the blue color denotes high Vp, high Vs, and low Vp/Vs, respectively.
Their scales are shown at the bottom. Black dots denote relocated small earthquakes that occurred in a range of 2 km depth above and below each layer. The red star
represents the 2019 Changning Ms 6.0 mainshock, and yellow stars denote recent aftershocks with magnitudes greater than 5.0, whereas white stars numbered 1 and
2 are the 2019Ms 5.3 Gongxian and 2018Ms 5.7 Xingwen earthquakes, respectively. White solid lines denote major anticlines, whereas white dashed lines are major
synclines (Yi et al., 2019). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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contrast in the source area could control the generation of the main-
shock and the distribution of the aftershock sequences. In addition, a
series of small aftershocks above 5–10 km depths could be activated in
the shallow crust, due to the upward intrusion of fluids along the an-
ticline and syncline structures in the crust from the upper mantle in the

BMW structure.
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Similar to (a–c) but for cross section BB’. The red color denotes low Vp, low Vs, and high Vp/Vs, respectively, whereas the blue color denotes high Vp, high Vs, and
low Vp/Vs, respectively. The color scales for Vp, Vs and Vp/Vs are shown on the right. The surface topography along the cross section is shown on the top. Crosses
denote earthquakes that occurred within 5 km off the cross section. (g) Location of cross sections. Other symbols are the same as those in Fig. 6. (For interpretation of
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