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The use of remotely sensed data to estimate and monitor the gross primary pro-
duction (GPP) of an ecosystem on regional scales is an important method in
climate change research. Under the unremitting efforts of scientists, many successful
remote-sensing-based GPP models have been developed for various vegetation types
and regions. However, in practice, some models have been applied to a wide variety of
ecosystems, and the suitability of a particular model for the environment under consid-
eration has seldom been taken into account. Due to ecosystem diversity and climatic and
environmental variation, it is often difficult to find a model that is suitable for a specific
vegetation region. In this article, a new method is proposed for estimating the GPP of
alpine vegetation, known as the alpine vegetation model (AVM). The accuracy of the
AVM in estimating the GPP was compared to that of four other models: the vegetation
photosynthesis model (VPM), eddy covariance–light use efficiency (EC–LUE) model,
temperature and greenness (TG) model, and vegetation index (VI) model. The results
demonstrated that the AVM displays superior accuracy in estimating the GPP of alpine
vegetation. We also found that there is information redundancy in the input variables of
these four models, which may account for their lower accuracy in estimating the GPP.
In addition, the GPP estimates using the enhanced vegetation index are affected more in
the case of low rather than high GPP by the influence of senesced grass during the early
and late grassland growing season.

1. Introduction

The global estimation and monitoring of plant photosynthesis (known as gross primary
production (GPP)) is a critical component of climate change research (Hilker et al. 2008).
Satellite remote sensing provides consistent and systematic observations of vegetation and
ecosystems and has played an increasing role in the estimation of GPP (Xiao, Hollinger,
et al. 2004). The modelling of carbon cycling requires a parameterization of the land surface
(Hall, Townshend, and Engman 1995), which is only possible on a regular basis and in a
spatially continuous mode using remote sensing. In the current literature, there are two
main barriers to understanding global carbon cycling.
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Table 1. The remote-sensing-based models used for GPP estimation.

Model Model structure Target of model References

GLO-PEM GPP = ε0 × (fPAR(NDVI)) ×
(PAR) × f (T) × (SM) × (VPD)

A variety of
ecosystems

Prince and Goward (1995)

3-PG GPP = ε⊥0 × (fPAR(LAI)) ×
(PAR) × f (T) × (SM) × (VPD)

Forests Landsberg and Waring
(1997)

MODIS-PSN GPP = ε0 × (fPAR(NDVI)) ×
(PAR) × f (T) × (VPD)

A variety of
ecosystems

Running et al. (2000)

C-Fix GPP = p(Tatm) × CO2_fert × ε ×
(fPAR(NDVI)) × (PAR)

Forests Veroustraete, Sabbe, and
Eerens (2002)

VPM GPP = ε⊥0 × (EVI) × (PAR) ×
f (T) × f (W )

Forests Xiao, Hollinger, et al.
(2004) and Xiao, Zhang,
et al. (2004)

EC-LUE GPP = ε0 × min{f (T), f (W )} ×
(fPAR(NDVI)) × (PAR)

A variety of
ecosystems

Yuan et al. (2007)

TG GPP = m × (scaledEVI) ×
(scaledLST)

A variety of
ecosystems

Sims et al. (2008)

VI GPP = m × (EVI)2 × (PAR) Crops Wu, Han, et al. (2010) and
Wu, Munger, et al. (2010)

AVM GPP = m × (EVI)scaled × Tscaled Alpine vegetation This study (2013)

Note: GPP is gross primary production; ε0 is apparent quantum yield or maximum light use efficiency; fPAR is
the fraction of absorbed photosynthetically active radiation; PAR is the photosynthetically active radiation; f (T)
and T scaled refer to the two forms of the temperature stress factor; SM is soil moisture; VPD is water vapour
pressure deficit; f (W ) is canopy water content; p(Tatm) is the temperature dependency factor; CO2_fert is the
normalized CO2 fertilization factor; ε is radiation use efficiency; EVI is the enhanced vegetation index; m is a
conversion coefficient; the scaledEVI is the difference between EVI and 0.1; and (EVI)scaled is the difference
between EVI and EVIbase, which is the mean value of EVI over time when the temperature is below 0◦C (the
biological temperature).

First, high-accuracy models are required. Although there are many remote-sensing-
based models available, such as the global production efficiency model (GLO-PEM)
(Prince and Goward 1995), Monteith-type parametric model (C-FIX) (Veroustraete, Sabbe,
and Eerens 2002), vegetation photosynthesis model (VPM) (Xiao, Hollinger, et al. 2004;
Xiao, Zhang, et al. 2004; Xiao et al. 2005), eddy covariance–light use efficiency (EC–LUE)
model (Yuan et al. 2007), temperature and greenness (TG) model (Sims et al. 2008), and
vegetation index (VI) model (Wu, Munger, et al. 2010) (see Table 1), these models are
only applicable to specific areas or sites. There is a need for these models to be investi-
gated in a variety of environments, especially those characterized by climatic conditions
and vegetation different from those of the models’ target environments.

Second, more field observations are needed to develop and validate remote-sensing-
based models. In recent years, a number of field studies have used eddy covariance (EC)
techniques, which can provide information on the seasonal dynamics and inter-annual vari-
ation of the net ecosystem exchange (NEE), ecosystem respiration (ER), and GPP for
studying the carbon cycle in typical forest, grassland, and cropland ecosystems through-
out the world (Goulden et al. 1996a, 1996b; Hollinger et al. 1999; Schulze et al. 1999; Law
et al. 2000; Yu, Fu, et al. 2006; Yu, Wen, et al. 2006; Yu et al. 2008; Xiao et al. 2008, 2010;
Wu, Han, et al. 2010; Wu, Munger, et al. 2010; Wu et al. 2012). In particular, the establish-
ment of the global FLUXNET network provides favourable conditions for studies of the
global carbon cycle (http://www.fluxnet.ornl.gov/fluxnet/index.cfm). Continuous network-
based observations of the carbon dioxide (CO2) and energy fluxes over diverse ecosystems
can provide integrated information on the ecological processes on ecosystem and regional
scales; such valuable data sets (Fu et al. 2010) have enabled the development and validation
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8268 F. Li et al.

of remote-sensing-based models of the carbon exchange between the terrestrial biosphere
and the atmosphere.

Consequently, this article is focused on the following three problems: (1) estimating
the GPP of alpine vegetation (alpine meadows) using remotely sensed data based on a new
model that was developed in this study; (2) comparing the accuracy of different remote-
sensing-based models in the GPP estimation of alpine vegetation; and (3) analysing the
relationships between the key photosynthesis control factors, which are widely understood
to be the functional relationship of photosynthetically active radiation (PAR) (MJ m−2), the
fraction of the PAR absorbed by the canopy (fPAR), and the photosynthetic efficiency term
(ε⊥0), following the light use efficiency (LUE) approach of Monteith (1972, 1977) (e.g.
Prince 1991; Goetz and Prince 1999; Heinsch et al. 2002; Turner, Ritts, et al. 2003; Turner,
Urbanski, et al. 2003).

2. Methods

2.1. Study site

China possesses vast grassland resources that include alpine meadow, steppe, desert, and
tundra. The total grassland area in China is approximately 400 million hectares, accounting
for 41.7% of the country’s land area (Ren et al. 2008). Based on temperature, the grassland
regions in China fall into two categories: alpine meadow and temperate steppe (Figure 1).
Alpine meadow is characterized by the presence of perennial fascicular cereal grass living
in a frigid, wet, strong solar radiation, and windy environment with annual precipitation
about 350–550 mm, annual average temperature below 0◦C, and an altitude of approxi-
mately >3000 m. The alpine meadow in China is distributed primarily to the south and the
east of the Tibetan plateau.

Our study site is located at the A’rou EC observation station (100◦ 27′ 52.9′′ E, 38◦ 2′
39.8′′ N), which was constructed in July 2007 in an area of alpine meadow (Figure 1). The
experimental platform is relatively flat, and the underlying surface is relatively homoge-
neous. The annual average temperature of the area was –0.3◦C in 2009, and the annual
precipitation in that year was 450.5 mm. The dominant species include Guinea grass,
Kobresia bellardii, and Stipa baicalensis Roshev. The typical height of the plants is approx-
imately 20–30 cm, but the fractional cover of vegetation is about 70–90%. The observation
variables included the wind speed and direction, air temperature, precipitation, four radia-
tion components, soil temperature and moisture profiles (measured at depths of 10, 20, 40,
80, 120, and 160 cm), and EC (measured at a height of 3.15 m). The EC measurements
were commenced in June 2008, and the other measurements in July 2007 (Li et al. 2009;
Wang et al. 2011).

2.2. Data

2.2.1. Climate data

The climate parameters measured in this study include air temperature, precipitation, and
PAR, estimated from the downward shortwave radiation, which is equal to the difference
between total radiation and longwave radiation, with a climatic coefficient of 0.43 (Wang
et al. 2011). All of the related climatic parameters were measured using an automatic
meteorology observation system installed at the A’rou observation station.

2.2.2. EC data

The EC data (including water vapour and CO2 densities), latent heat flux, and sensible heat
flux were collected at the A’rou station between 2008 and 2009. Water vapour density and
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Figure 1. Distribution of grassland in China and location of A’rou station, used for EC observations.

CO2 density were measured using an open-path, infrared gas analyser (Li-7500, LiCor Inc.,
USA); the sampling frequency was 10 Hz, and the energy balance ratio was approximately
87%. The latent heat flux and sensible heat flux were derived from the EC observations.
The GPP can be estimated from daytime NEE, which was measured using the EC method,
and the daytime ER, which was estimated using the function established by the relationship
between the night-time NEE (assumed to be equal to night-time ER) and environmental fac-
tors (e.g. the air temperature, soil temperature, and soil moisture) (Equation (1)). We refer
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8270 F. Li et al.

the reader to the literature for details on data quality control and processing (Desai et al.
2008; Wang et al. 2011). The GPP is given by

GPP = (NEE) + (ER), (1)

where GPP is in units of g C m−2 (grammes of carbon per metre squared), NEE is the
net ecosystem exchange in g C m−2, and ER is the daytime ecosystem respiration, also in
g C m−2.

2.2.3. Remotely sensed data

The remotely sensed data were obtained from the moderate resolution imaging spectro-
radiometer (MODIS) sensor aboard the National Aeronautics and Space Administration
(NASA) Terra satellite, launched in December 1999. The MODIS Land Science Team
provides the user with a suite of 8 day composite products, including the 8 day surface
reflectance product (MOD09A1) designed for the study of vegetation and land surfaces,
with a spatial resolution of 500 m and coverage of seven spectral bands: blue (459–479
nm), green (545–565 nm), red (620–670 nm), near-infrared (841–875 and 1230–1250 nm),
and shortwave infrared (1628–1652 and 2105–2155 nm).

We downloaded the 8 day surface reflectance and 8 day land-surface temperature (LST)
(MOD11A2) data sets for the period January 2009 to December 2009 from the LAADS
website (http://www.ladsweb.nascom.nasa.gov). Based on the geolocation information (lat-
itude and longitude) from the CO2 flux tower at the A’rou station, the reflectance and LST
data were extracted from one MODIS pixel (500 m × 500 m) centred on the flux tower
(Figure 1).

2.3. GPP models

One of the most widely applied methods in GPP modelling is the LUE approach, which
is based on the functional convergence theory (Field 1991), which hypothesises that plants
alter the canopy leaf area and harvest light according to the availability of resources as
a result of evolutionary processes, in order to optimize their carbon fixation (Goetz et al.
1999). The amount of carbon fixation (photosynthesis) is generally related to environmen-
tal factors such as solar radiation, precipitation, temperature, and soil type. However, the
effects of these factors on photosynthesis are still unclear. To describe the process of pho-
tosynthesis quantitatively, linear models, such as the VPM, TG, VI, and EC–LUE models,
are typically employed.

2.3.1. Vegetation photosynthesis model

The VPM was proposed by Xiao, Hollinger, et al. (2004) and Xiao, Zhang, et al. (2004).
It assumes that leaf and forest canopies are composed of photosynthetic vegetation
(PAV; primarily chloroplasts) and non-photosynthetic vegetation (NPV; primarily senescent
foliage, branches, and stems). The presence of NPV has a significant effect on fPAR at the
canopy level. Non-photosynthetic absorption can vary in magnitude (e.g. 20–50%) depend-
ing on the species, leaf morphology, leaf age, and growth history (Hanan et al. 1998, 2002;
Lambers, Chapin, and Pons 1998). Based on the conceptual partitioning of the vegetation
into NPV and PAV within the leaf and canopy, VPM was defined as follows:
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GPP = εg × (fPAR)PAV × (PAR), (2)

where fPARPAV is the fraction of the PAR absorbed by leaf chloroplasts in the canopy
(Equation (3)) and εg is the LUE affected by the temperature, water, and leaf phenologies
(see Equation (5)). The quantities on the right-hand side of Equation (2) are given by

fPARPAV = a × (EVI), (3)

where a is a coefficient set equal to 1.0 and EVI is the enhanced vegetation index
(Equation (4)):

EVI = G
ρNIR − ρred

ρNIR + C1ρred − C2ρblue + L
, (4)

where ρNIR, ρred, and ρblue are the spectral reflectance in the near-infrared, red, and blue
MODIS bands, respectively, and G, C1, C2, and L are constants with values of 2.5, 6.0, 7.5,
and 1.0, respectively.

εg = ε0 × f (T) × f (W ) × Pscalar, (5)

where ε0 is the apparent quantum yield or maximum light use efficiency; f (T)
(Equation (6)) is the down-regulation scalar for the effect of temperature calculated using
the equation developed for the Terrestrial Ecosystem Model (TEM) (Raich et al. 1991); and
f (W ) (Equation (7)) and Pscalar are the down-regulation scalars for the effects of water and
leaf phenology on the light use efficiency of vegetation, respectively.

f (T) = (T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax) − (T − Topt)2
, (6)

where Tmin, Tmax, and Topt are the minimum, maximum, and optimal temperature, respec-
tively, for photosynthetic activity. When the air temperature falls below Tmin, Tscalar is set
to zero. In this study, the values of Tmin, Tmax, and Topt were set to 0◦C, 35◦C, and 12◦C,
respectively (Wang et al. 2011).

In VPM, f (W ) is the canopy water content calculated based on the water-sensitive veg-
etation index (obtained from satellite remote-sensing data) (Xiao, Hollinger, et al. 2004;
Xiao, Zhang, et al. 2004). The scalar f (W ) is given by

f (W ) = 1 + (LSWI)

1 + (LSWI)max
, (7)

where LSWI is the water-sensitive vegetation index (see Equation (8)) and LSWImax is the
maximum LSWI within the plant growing season. In Equation (7), LSWI is given by

LSWI =
ρNIR − ρSWIR

ρNIR + ρSW
, (8)

where ρSWIR is spectral reflectance in the shortwave MODIS bands.
Pscalar is used to account for the effect of leaf age on photosynthesis at the canopy level,

and it depends on leaf longevity. Because the new leaves in a meadow canopy emerge
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8272 F. Li et al.

throughout a large portion of the plant growing season, Pscalar is set to 1.0 in this study (Li
et al. 2007).

2.3.2. EC–LUE model

The EC–LUE model, developed by Yuan et al. (2007), relies on two assumptions, the first
being that the fraction of absorbed PAR is a linear function of the normalized difference
vegetation index (NDVI) based on a radiative transfer model (Myneni and Williams 1994).
The second assumption is that the realized light use efficiency, calculated from a biome-
independent invariant potential LUE, is controlled by the air temperature or soil moisture,
whichever is most limiting. The EC–LUE model is driven by four variables: NDVI, PAR,
air temperature, and Bowen ratio of sensible to latent heat flux. The model is defined as
follows:

GPP = ε × (fPAR) × (PAR), (9)

where fPAR is the fraction of the PAR absorbed by the vegetation canopy (see
Equation (10)) and ε is the light use efficiency (see Equation (12)). The absorbed PAR
fraction is given by

fPAR = a0 × (NDVI) + b0, (10)

where a0 and b0 are empirical constants. In this study, a0 and b0 are set to 1.24 and −0.168,
respectively, following Yuan et al. (2007), and NDVI is given by the following equation:

NDVI = ρNIR − ρred

ρNIR + ρred
, (11)

where ρNIR and ρred are spectral reflectance in the near-infrared and red MODIS bands,
respectively. The light use efficiency is given by

ε = ε0 × min{f (T), f (W )}, (12)

where ε0 is the maximum light use efficiency and f (T) (see Equation (6)) and f (W ) (see
Equation (13)) are the down-regulation scalars for the respective effects of temperature and
moisture on the LUE of the vegetation. The scalar f (W ) is given by

f (W ) = (LE)

(LE) + (HS)
, (13)

where LE is the latent heat flux and HS is the sensible heat flux.

2.3.3. TG model

The TG model was developed by Sims et al. (2008) and was driven by EVI and LST from
MODIS. In contrast to other models, the TG model was based entirely on remotely sensed
data. For the data obtained from 11 EC flux towers covering a wide range of vegetation
types across North America, the model performed well and provided superior predictions
of GPP compared with the MODIS GPP product. The GPP was defined as
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GPP = ((scaled EVI) × (scaled LST)) × m, (14)

where the scaled EVI is the difference between EVI and 0.1. The study of Sims et al. (2008)
demonstrated that the GPP drops to zero at an EVI value of approximately 0.1. The quantity
m is a conversion coefficient, and the scaled LST is defined as the minimum of two linear
equations:

scaled LST = min

{
(LST)

20
, 2 − (0.05 × (LST))

}
. (15)

This equation results in a maximum value for the scaledLST of 1.0 when LST = 30◦C and
a minimum value of 0.0 when LST decreases to 0◦C or increases to 50◦C. When the LST
is greater than 50◦C or less than 0◦C, the scaled LST is also defined as zero.

2.3.4. VI model

The VI model, proposed by Wu, Han, et al. (2010), incorporates the vegetation indices
for both LUE and the fraction of absorbed PAR. The model produced especially reliable
proxies in maize. The VI model was defined according to Monteith’s logic as follows:

GPP = c × (EVI)2 × (PAR), (16)

where c is a conversion coefficient used in GPP estimation and the other parameters of
the VI model are the same as above.

2.3.5. Alpine vegetation model

The LUE models, which are widely used in GPP estimation, are expressed as a function
of the PAR, fPAR, maximum light use efficiency (ε⊥0), and environmental constraint fac-
tors (e.g. temperature and water) (Monteith 1972, 1977). The function can be partitioned
into three different categories of factor, the first being fPAR, which is an ‘internal’ factor
directly related to the primary mechanism of photosynthesis. The second category con-
sists of environmental stresses (‘external’ factors), such as light stress (PAR), temperature
stress, and water stress, which can considerably modify LUE (Wu, Chen, and Huang 2011).
The final category is maximum light use efficiency, which depends on vegetation type and
phenology.

Numerous studies on GPP have employed remotely sensed observations (e.g. use of the
vegetation index) to quantify fPAR (Xiao, Hollinger, et al. 2004; Xiao, Zhang, et al. 2004;
Yuan et al. 2007; Sims et al. 2008; Wu, Han, et al. 2010; Wu, Munger, et al. 2010; Wu,
Chen, and Huang 2011; Wu et al. 2012). The vegetation index is a direct manifestation
of the chlorophyll content within the canopy and is therefore closely related to fPAR. The
factors in the first category can therefore be quantified using the vegetation index obtained
from remotely sensed observations.

There are many available vegetation indices, such as NDVI (Rouse et al. 1974) and
EVI (Huete et al. 1997, 2002). NDVI is the most widely applied vegetation index in eval-
uating optical measures of the ‘greenness’ of the vegetation canopy, a composite property
of leaf chlorophyll, leaf area, canopy cover, and canopy architecture. However, the relation-
ship between NDVI and chlorophyll content within the canopy is weaker in high-biomass
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Figure 2. Relationship between NDVI and GPP–EC at A’rou station.
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Figure 3. Relationship between EVI and GPP–EC at A’rou station.

regions due to NDVI saturation (Wang et al. 2005). In this study, for example, there is a
clear saturation of NDVI above 0.8 (see Figure 2). The coefficient of determination between
NDVI and GPP–EC is 0.7688. In contrast, the sensitivity of EVI improves in high-biomass
environments (Jiang et al. 2008), and higher values of the coefficient of determination, R2 =
0.8132, are observed in such environments (see Figure 3). EVI can therefore be adopted to
explain the variance in fPAR.

Environmental stress can be quantified using environmental factors such as PAR, tem-
perature, water availability, and soil, but the effects of these factors on photosynthesis are
difficult to represent mathematically. The relationship between environmental factors and
GPP is usually expressed in the form of a linear combination (see Table 1). The inclu-
sion of a large number of environmental factors may result in large model uncertainties.
In fact, there is usually only one main constraint factor in photosynthesis: for example,
in alpine environments, the temperature conditions impose severe constraints on flowering
phenology, reproductive success, growth, population dynamics, and phenotypic selection
of quantitative traits (Billings 1987). Totland (1999) also demonstrated this phenomenon in
alpine Ranunculus acris through experimental warming using open-top chambers (OTCs).
On the other hand, temperature is closely correlated with other environmental variables,
such as the vapour press deficit (VPD), PAR, and even soil moisture (Sims et al. 2008; Wu
et al. 2012). The observed coefficient of determination between air temperature and GPP
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Figure 4. Relationship between T a (air temperature) and GPP–EC at A’rou station.
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Figure 5. Relationships between soil moisture (SM) and EVI and GPP–EC at A’rou station.

obtained using the EC method (GPP–EC) was 0.64 (see Figure 4), which is higher than that
between other environmental factors. In contrast, the effect of water status on GPP–EC and
EVI is not clear (see Figure 5). In regard to precipitation, there is also no clear promot-
ing effect on GPP–EC and EVI (see Figure 6). Air temperature was therefore used as the
environmental stress factor in this study.

In the LUE models, the maximum light use efficiency (ε0) must be estimated for each
individual vegetation type (Wang et al. 2011; Xiao, Hollinger, et al. 2004). Furthermore,
ε0 is influenced by phenology and environmental stresses. Here, ε0 is replaced by the fitted
coefficient m (the slope) between the product of fPAR and environmental stress and GPP–
EC. The slope, m, is the mean light use efficiency. The model used for GPP estimation can
then be expressed as follows:

GPP = m × (fPAR) × Escalar, (17)

where GPP is in g C m−2, m is the conversion coefficient (also in g C m−2) and Escalar is
environmental stress.
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Figure 6. Growing-season dynamics of GPP, EVI, and precipitation at A’rou observation station.
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Figure 7. Growing seasonal dynamics of GPP, EVI, and daily mean air temperature at the A’rou
observation station.

To substantiate Equation (17), the daily variance in GPP of alpine meadows during the
growing season was accounted for in terms of EVI and air temperature (see Figure 7).
The model used in this study, the alpine vegetation model (AVM), can therefore be
expressed as

GPP = m × EVIscaled × Tscaled, (18)

where EVIscaled is given by

EVIscaled = EVI − EVIbase, (19)

and T scaled is the temperature stress factor, given by Equation (20). In Equation (19), EVI is
given by Equation (4) and EVIbase is the mean value of EVI over time when the temperature
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is below 0◦C (the biological temperature). The photosynthetic process is expected to cease
when the temperature falls below the biological temperature. The value of EVIbase is taken
to be 0.15. The temperature stress factor is

Tscaled=(Ta − Tmin)/(Tmax − Tmin), (20)

where T a is the daytime mean air temperature and Tmin is the biological temperature. The
maximum temperature during the alpine plant growing season is denoted by Tmax.

3. Results

3.1. AVM estimation

It is more meaningful to measure carbon fixation during the plant growing season than
to measure it year-round. In this study, GPP was therefore estimated using AVM during
the growing season (from 22 April to 30 October 2009). Figure 8 shows the relationship
between the product of the parameters EVIscaled and T scaled from the AVM and the GPP
observed using the EC method (EC−GPP). The value of R2 was 0.857. The conversion
coefficient, m, was calibrated to be 19.91 g C m−2 with the GPP value observed at the
A’rou station.

Figure 9 shows a comparison between GPP estimated using AVM (GPP–AVM) and
that obtained using the EC method (GPP–EC) during the alpine plant growing season.
Overall, the AVM performed very well in estimating GPP. However, GPP is underestimated
by AVM during the early growing season (approximately 1 June) and at the end of the
growing season (after 1 October). This discrepancy is due to our use of the mean conversion
coefficient (m), which minimizes the total error.

3.2. Model comparison

Many remote-sensing-based models are used to estimate the GPP on a variety of scales
ranging from local to regional and even global. However, it is very difficult to find a model
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Figure 8. Relationship between EVIscaled × T scaled (the parameters of AVM) and GPP measured
using the EC method at A’rou observation station.
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Figure 9. Comparison between GPP estimated using AVM and that obtained using the EC method
during the alpine plant growing season (22 April to 30 October 2009).

capable of estimating the GPP of an entire vegetation ecosystem. Studying the suitability of
models with regard to specific areas and objectives is therefore very important (Yuan et al.
2007). In this study, four models (VPM, TG, VI, and EC–LUE) were compared with AVM
in terms of their accuracy in estimating the GPP of alpine vegetation. Figure 10 shows the
relationship between the values estimated using the four models and GPP estimated using
the EC method (GPP–EC). Overall, the four models performed well. The R2 values for
VPM, TG, VI, and EC–LUE are 0.8211, 0.8135, 0.8134, and 0.8110, respectively.

Table 2 shows that AVM estimates the GPP with a higher accuracy for alpine vegetation
compared with the other four models (R2 = 0.857 for AVM). The mean error, maximum
deviation, and RMSE are lowest for AVM compared with the other models, thus implying
that AVM may be the optimum model to reflect the daily variation in GPP over the growing
season. For the aggregated estimation of GPP over the growing season, the estimate made
using the TG model (about 775.79 g C m−2) was closest to the observation made with EC
(about 759.54 g C m−2), while the estimation made with AVM was about 730.49 g C m−2.

4. Discussion

Alpine plants grow in an alpine climate, which is present at high elevations and above the
tree line. Most alpine plants are faced with the harsh conditions of the alpine environment,
which include low temperatures, strong solar radiation, and a short growing season (Körner
2003). Explicit linear relationships are employed to simplify the complexity for a given
objective, such as GPP estimation. One of the most frequently used methods for estimating
GPP with remotely sensed data is the LUE approach (Sjöström et al. 2011), which links
GPP to a linear combination of remotely sensed variables (e.g. EVI and NDVI) and climatic
variables (e.g. PAR and temperature), as in the VPM and EC–LUE approaches.

The VPM is based on the conceptual partitioning of chlorophyll (fPARPAV) and non-
photosynthetically active vegetation (NPV) within the canopy (Xiao, Hollinger, et al. 2004;
Xiao, Zhang, et al. 2004; Xiao et al. 2005) and has been widely used in various ecosystems
due to its higher accuracy in GPP estimation compared with other models (Li et al. 2007;
Wang et al. 2011; Wu, Munger, et al. 2010). Li et al. (2007) demonstrated that the phase
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Figure 10. Coefficient calibration of the four models ((a) VPM, (b) TG, (c) VI, and (d) EC–LUE)
with GPP estimated using the EC method (GPP–EC) for alpine vegetation.

Table 2. Comparison of the accuracy of the five models used for GPP estimation in alpine
vegetation.

Model
Mean error

(g C m−2 day−1)
Maximum deviation

(g C m−2 day−1)
RMSE

(g C m−2 day−1) R2

Aggregated
growing GPP

(g C m−2)

AVM 0.80 3.22 1.05 0.857 730.49
VPM 0.90 3.55 1.20 0.821 725.94
TG 0.92 3.81 1.22 0.814 775.79
VI 0.93 3.80 1.22 0.813 689.15
EC–LUE 0.93 3.53 1.23 0.811 742.45
GPP–EC 759.54

and magnitude of the GPP estimated using the VPM are consistent with those of the tower-
based GPP for the three alpine ecosystems in the Qinghai–Tibet Plateau. The VPM uses a
time series of the EVI and canopy water content f (W ) (Equation (7), which is calculated
based on the water-sensitive vegetation index, LSWI) rather than the fraction of absorbed
photosynthetically active radiation, fPAR, and the water stress factor (Xiao, Hollinger, et al.
2004; Xiao, Zhang, et al. 2004). Figure 11(a) shows that the coefficient of determination
between f (W ) and the EVI is 0.9473. The scalar f (W ) most likely influences the accuracy
of GPP estimation. The water stress factor is usually used to describe the water status of
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Figure 11. Relationship between the input variables of the four models (VPM, TG, VI, and EC–
LUE). (a) and (b) VPM; (b) VI model; (c) TG model; (b) and (d) EC–LUE model.

the vegetation in the LUE approach (e.g. Prince 1991; Goetz and Prince 1999; Heinsch
et al. 2002; Turner, Ritts, et al. 2003; Turner, Urbanski, et al. 2003). The results of the
present study demonstrate that the use of the LSWI to describe the water stress factor is
unreasonable. In addition, Kato et al. (2004) and Shi et al. (2006) showed that water is
not a significant environmental constraint factor in alpine vegetation. In GPP estimation, it
is therefore important to examine the constraining factors relevant to the specific climate
and vegetation regions under study. Photosynthetically active radiation (PAR) corresponds
to light in the 400–700 nm wavelength range. PAR is the light that is available for pho-
tosynthesis and that is required for plant growth. A higher PAR may, therefore, promote
plant growth. However, the data obtained at the A’rou station show only a weak correlation
between EC-measured GPP and PAR (Figure 11(b)). It is therefore likely that PAR is not a
significant constraint factor in photosynthesis (Wang et al. 2011).

Regarding the EC–LUE model, it is assumed that a universal invariant potential LUE
exists across all sites and biomes. The potential LUE is reduced by non-optimal tem-
peratures or water stress. The magnitude of LUE and its relationship to the controlling
factors are of crucial importance in the EC–LUE model (Yuan et al. 2007), which uti-
lizes fPAR(NDVI) and min(f (T),f (W )) as input variables. Many studies have suggested
that the quantitative relationships between vegetation indices and the GPP–EC data clearly
demonstrate the improvement of EVI over NDVI in terms of the phase and magnitude of
photosynthesis (Xiao, Hollinger, et al. 2004; Xiao, Zhang, et al. 2004; Xiao et al. 2005; Li
et al. 2007; Wang et al. 2011; Wu, Han, et al. 2010; Wu, Munger, et al. 2010; Wu et al.
2012), especially in regions of high-density vegetation. The same conclusion was reached
in this study. The aforementioned improvement is most likely due to the fact that EVI takes
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more spectral information into account. In addition, we found that min(f (T),f (W )) is equal
to the value of f (W ) (Equation (13)) in most cases (Figure 11(d)); f (T) is seldom taken into
account in the EC–LUE model, which is unreasonable in alpine climatic regions.

The TG model, which uses EVI and LST (MOD11A2) as input parameters, can be
used on a regional scale and even on a global scale. The model structure is similar to
that of AVM. Unfortunately, LST is only an instant temperature at the time of satellite
passing, and it cannot describe daily changes in temperature. Figure 11(c) shows that the
coefficient of determination between LST and GPP is only 0.1065. However, the coefficient
of determination between the air temperature observed at the meteorological station and
GPP was 0.64. This result shows that the effect of LST on GPP estimation is limited by the
instantaneity of LST. Another important parameter in the TG model is m (the conversion
coefficient), which is calibrated using GPP data measured at EC stations (Sims et al. 2008).
When this model is used to estimate GPP on a regional scale, more EC stations are needed
to calibrate m. However, it is always difficult to determine this value due to the complex
temporal and spatial variation of land-surface vegetation.

The VI model is defined according to Monteith logic (Wu, Han, et al. 2010). This model
uses EVI and PAR as input variables, with the relationship between EVI and GPP being
significant. However, the effect of the combination of these variables on GPP estimation
is not clear. In addition, it is very difficult to determine the conversion coefficient, c, on a
regional scale in this model.

The AVM demonstrates that GPP can be estimated at high accuracy in alpine vege-
tation using remotely sensed data (EVI) and climatic data (air temperature). A higher R2

of 0.857 and lower mean error of 0.8 g C m−2 day−1 were obtained for EC-measured GPP.
Regarding changes in daily GPP, Figure 9 shows a clear trend for AVM-estimated GPP to be
lower than EC-measured GPP at a lower GPP range, while AVM-estimated GPP is slightly
higher than EC-measured GPP near the maximum of the GPP range. This trend occurs
because the mean conversion coefficient (m) was used. There is a key issue that must be
considered regarding m. Grassland areas are usually interspersed with senesced grass dur-
ing the early and late growing seasons, which renders a portion of photosynthetic vegetation
undetectable by remote sensing, and thus produces lower EVI than its actual value. When
grass approaches its maximum biomass, the vegetation coverage fraction increases, gen-
erating more shaded leaves, which cannot be detected using optical remote sensing. The
influence of EVI on GPP estimation is generally different during different periods through-
out the growing season (e.g. the early and middle growing seasons). The mean conversion
coefficient is simply a balance between the conversion coefficients derived for these two
periods. From the trends shown in Figure 9, it will also be observed that the GPP esti-
mate using EVI in the early and late grassland growing seasons is influenced more at times
corresponding to maximum biomass.

Regarding the maximum light use efficiency, ε0, which is a key parameter in the LUE
approach, incorrect estimation of ε0 can produce a systematic bias in the simulation results
(Wang et al. 2011). In this study, ε0 was not computed in the VPM. As shown in Figure 10,
VPM is simply the relationship between the product f (T) × f (W ) × (fPAR)PAV × (PAR)
and GPP–EC. The slope of 1.32 from the regression model was used to estimate GPP.
Compared with ε0, this slope corresponds only to the average conditions of the vari-
ables, for which the total error in the GPP estimation is minimal. However, the use of
the slope underestimates GPP at low values and overestimates it at high values. This
result is due to the sensitivity of EVI to senesced grass and dense canopy (which pro-
duces more shaded leaves) during certain periods. Li et al. (2007) and Wang et al. (2011)
reported ε0 values for alpine meadow of 1.83 and 1.6 g C MJ−1, respectively, which are
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higher than the mean conversion coefficient. GPP may, therefore, be overestimated with the
ε0 used in these studies. In contrast, the ε0 value (1.33 g C MJ−1) used by Xu et al. (2006) is
very close to that used in this study. In the TG model, m was calibrated to be 16.9 g C MJ−1

(Figure 10(b)). In the VI model, c was calibrated to be 2.06 g C MJ−1 (Figure 10(c)). The
maximum light use efficiency, ε0, was not calculated in the EC–LUE model (Figure 10(c)).
The value of 1.16 in Figure 10(d) for EC–LUE is simply the mean value of the light use
efficiency over the entire growing season, which is close to the conversion coefficient in
the VPM.

From the present study, it is evident that GPP data measured using the EC technique are
required by nearly all models to accurately calibrate the conversion coefficient (m) and light
use efficiency (ε), which are the basis of GPP estimation. In natural ecosystems, m and ε are
determined by a wide variety of biological, biophysical, and environmental parameters (Li
et al. 2007). Continuous network-based observations of CO2 and energy fluxes over diverse
ecosystems are therefore essential for the validation and calibration of models on ecosystem
and regional scales (Fu et al. 2010). Although there are over 548 CO2 eddy flux tower sites
worldwide, 412 of which are active and providing copious data (http://www.fluxnet.ornl.
gov/fluxnet/index.cfm), data quality and updates are still not guaranteed. Therefore, close
attention should be paid to data quality evaluation and data sharing.

Remote-sensing techniques have many advantages in GPP estimation over field mea-
surement methods and provide the potential to estimate the GPP on different scales.
However, remote-sensing-based GPP estimation is a complex procedure in which many
factors such as atmospheric conditions, mixed pixels, spatial heterogeneity and diver-
sity, complex biophysical environments, insufficient EC data, calculation of ER, and data
gap filling in the selected models may interactively affect GPP estimation performance.
To improve this, it is critical to identify the major uncertainties during the process of
developing GPP estimation models (Lu 2006; He et al. 2010). Potential solutions include
(1) accurate atmospheric calibration to reduce the uncertainty caused by different atmo-
spheric conditions; (2) the building of more EC observation stations to resolve the problems
of spatial heterogeneity and diversity; (3) model validation and suitability evaluation to
reduce uncertainties in GPP estimation (e.g. the suitability of AVM at other sites and in
other areas still needs to be evaluated); and (4) reducing the problem of mixed pixels with
the method of mixed pixel decomposition (Keshava 2003). Therefore, future studies may
focus on model validation and suitability, as well as on GPP estimation and monitoring, at
regional scales.

5. Conclusions

Models are important methods for researching the carbon cycle of terrestrial ecosystems.
Due to different objectives and the availability of different parameters, scientists have
developed many models. Taking GPP as an example, the development of a model that
incorporates remotely sensed data is a common goal. However, due to ecosystem diversity
and differences in climate and environment, it is always difficult to find a model that is
suitable for different climate and vegetation regions.

In this study, a new method was proposed for estimating the GPP of AVM. The results
showed that this model demonstrates a higher accuracy in estimating GPP compared with
four other models (VPM, TG, VI, and EC–LUE). By analysing the sensitivity of the input
variables in these models, we found that there is information redundancy in the input vari-
ables, which may be the reason for the lower accuracy of these models in estimating GPP
compared with the AVM.
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Regarding the conversion coefficient, m, in the VPM, which gives the mean conditions
of the variables compared with the maximum light use efficiency, ε0, the pattern of the
VPM-estimated GPP showed underestimation at low GPP and overestimation at high GPP.
These results were recorded because the sensitivity of EVI is influenced by senesced grass
and dense canopy (which produces more shaded leaves) in different periods. We also found
that estimates of GPP based on EVI in the early and late grassland growing seasons are
affected more than near the periods of maximum biomass.
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