Current Browsing: Meteorological element


HiWATER: Dataset of Hydrometeorological observation network (an automatic weather station of Sidaoqiao populus forest station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao populus forest station between 10 July, 2013, and 31 December, 2013. The site (101.124° E, 41.993° N) was located on a populous and tamarix forest (Populus euphratica Olivier. and Tamarix chinensis Lour.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 876 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 28 m, north), wind speed profile (010C; 28 m, north), two four-component radiometer (CNR4; 6 m and 24 m, south), two infrared temperature sensors (SI-111; 24 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), and soil temperature profile (109ss-L; 0, -0.02 and -0.04 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), 24 m four-component radiation (DR_1, incoming shortwave radiation; UR_1, outgoing shortwave radiation; DLR_Cor_1, incoming longwave radiation; ULR_Cor_1, outgoing longwave radiation; Rn_2, net radiation) (W/m^2), 6 m four-component radiation (DR_2, incoming shortwave radiation; UR_2, outgoing shortwave radiation; DLR_Cor_2, incoming longwave radiation; ULR_Cor_2, outgoing longwave radiation; Rn_2, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), and soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Data during 16 July, 2013 and 17 July, 2013 were missing during the malfunction of datalogger. The soil heat flux (G3) was missing during 20 November, 2013 and 8 December, 2013 because the wire was break by the sheep. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-11

HiWATER: Dataset of hydro-meteorological observation network (automatic weather station of Huazhaizi Desert Steppe Station, 2014)

The data set contains the observation data of meteorological elements from the Huazhaizi Desert Steppe Station,,which is located along the middle reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2014 to December 31, 2014. The station is located in Huazhaizi of Zhangye, Gansu Province. The underlying surface is piedmont desert. The latitude and longitude of the observation point is100.3186E, 38.7652N, and the altitude is 1731m. The observation instruments in Huazhaizi are installed respectively by Beijing Normal University and Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The observation instruments of Beijing Normal University are: two infrared thermometers installed 24 meters above the ground, facing south, with the probe vertical downward; soil temperature probes buried respectively at 0cm on the ground surface, 2cm、4cm、20cm、60cm and 100cmunder the ground; soil moisture sensors buried 4cm、20cm and 100cm under the ground; soil heat flow boards (3 pieces) buried 6cm under the ground. The observation instruments of Cold and Arid Regions Environmental and Engineering Research Institute are: wind speed sensor erected 10.48m、0.98m and 2.99m above the ground(3 layers),facing North; wind direction sensor erected 4 meters above the ground; air temperature and relative humidity sensors erected 1m and 2.99m above the ground(2 layers),facing North East; four-component radiometer installed 2.5 meters above the ground, facing South; barometric pressure sensor placed in the water-proof box; tipping bucket rain gauge installed 0.7 meter above the ground; soil temperature probes buried 4cm、10cm、18cm、26cm、34cm、42cm and 50cmunder the ground; soil moisture sensors buried 2cm、10cm、18cm、26cm、34cm、42cm、50cm and 58cm under the ground, 3 sensors buried at 2cm. The specific observation elements are as follows: (1) Observation elements of Beijing Normal University : surface radiation temperature (IRT_1, IRT_2) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil moisture (Ms_4cm, Ms_20cm, Ms_100cm) (unit: percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_20cm, Ts_60cm, Ts_100cm) (unit: Celsius). (2) Observation elements of Cold and Arid Regions Environmental and Engineering Research Institute: wind speed (WS_0.48m, WS_0.98m, WS_2.99m) (unit: m/s), wind direction (WD_4m) (unit: degree), four-component radiation (DR, UR , DLR_Cor, ULR_Cor) (unit: watt / square meter), air temperature and humidity (Ta_1m, Ta_2.99m, RH_1m, RH_2.99m) (unit: Celsius, percentage), air pressure (Press) (unit: hectopascal), precipitation (unit: mm), soil temperature (Ts_4cm, Ts_10cm, Ts_18cm, Ts_26cm, Ts_34cm, Ts_42cm, Ts_50cm) (unit: Celsius), soil moisture (Ms_2cm_1, Ms_2cm_2, Ms_2cm_3, Ms_10cm, Ms_18cm, Ms_26cm, Ms_34cm, Ms_42cm, Ms_50cm, Ms_58cm) (unit: volumetric water content, percentage). The observation elements of Beijing Normal University are 10-minute average data, and the observation elements of Cold and Arid Regions Environmental and Engineering Research Institute are 30-minute average data. Processing and quality control of observation data: (1) Ensure 144 data of Beijing Normal University per day (every 10 minutes), and 48 data of Cold and Arid Regions Environmental and Engineering Research Institute per day (every 30 minutes). If there is missing data, it is marked as -6999. Data between 12.11-12.31,2014 is missing due to storage problems. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2014-6-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

2019-09-11

HiWATER:Dataset of Hydrometeorological observation network (an automatic weather station of desert station, 2016)

This data set includes observation data of meteorological elements in the downstream desert station of Heihe Hydrometeorological Observation Network from January 1, 2016 to December 31, 2016. The site is located in the desert beach of Ejina Banner, Inner Mongolia, and the underlying surface is desert. The latitude and longitude of the observation point is 100.9872E, 42.1135N, and the altitude is 1054m. The air temperature and relative humidity sensors are installed at 5m and 10m, facing the north; the barometer is installed at 2m; the tipping bucket rain gauge is installed at 10m; the wind speed sensor is set at 5m, 10m, and the wind direction sensor is set at 10m, facing the north; the four-component radiometer is installed at 6m, facing south; two infrared thermometers are installed at 6m, facing south, the probe orientation is vertically downward; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 60cm and 100cm, in the south of the 2m from the meteorological tower; soil heat flux plates (3 pieces) are buried in the ground 6 cm in order. Observation items include: air temperature and humidity (Ta_5m, RH_5m, Ta_10m, RH_10m) (unit: centigrade, percentage), air pressure (Press) (unit: hectopascal), precipitation (Rain) (unit: mm), wind speed (WS_5m, WS_10m) (unit: m / s), wind direction (WD_10m) (unit: degree), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts / square meter), surface radiation temperature (IRT_1, IRT_2 ) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_60cm, Ms_100cm) (unit: volumetric water content, percentage) and soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_60cm, Ts_100cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2016-6-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

2019-07-18

HiWATER:Dataset of Hydro-meteorological Observation Network (An Automatic Weather Station of Sidaoqiao Barren-land Station, 2014)

The data set contains the observation data of meteorological elements from the Barren-land Station,which is located along the lower reaches of the Heihe Hydro-meteorological Observation Network, and the data set covers data from January 1, 2014 to December 31, 2014. The station is located in Sidaoqiao,Dalaihubu Town, Ejina Banner, Inner Mongolia. The underlying surface is barren land. The latitude and longitude of the observation point is 101.1326E, 41.9993N, and the altitude is 878m. The four-component radiometer is installed 6 meters above the ground, facing South; two infrared thermometers are installed 6 meters above the ground, facing South, and the probe orientation is vertical downward; the soil temperature probes are buried respectively at 0cm on the ground surface, 2cm and 4cm under the ground, they are located 2 meters from the meteorological tower in the South; the soil moisture sensors (installed on March 15,2014) are buried 2cm and 4cm under the ground, 2 meters from the meteorological tower in the South; the soil heat flow boards (3 pieces) are buried 6cm under the ground, 2 meters from the meteorological tower in the South. Observed items include: four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watt / square meter), surface radiation temperature (IRT_1, IRT_2) (unit: Celsius) , soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watt / square meter), soil moisture (Ms_2cm , Ms_4cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm) (unit: Celsius). Processing and quality control of observation data: (1) Ensure 144 data per day (every 10 minutes), if there is missing data, it is marked as -6999. The surface radiation temperature IRT2 data during October 12,2014 to November 8,2014 is missing because of sensor problem; Some 2cm soil moisture data during March21 to March 29 and October 12 to November 8 is missing due to probe problem. (2) Eliminate moments with duplicate records; (3) Remove data that is significantly beyond physical meaning or beyond the measuring range of the instrument; (4) Data marked by red is debatable; (5) The formats of the date and time are uniform, and the date and time are in the same column. For example, the time is: 2014-9-10 10:30; (6) The naming rule is: AWS + site name. For hydro-meteorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

2019-07-12