Current Browsing: MODIS


MODIS Snow cover product dataset in China (2000-2004)

The data set is from February 24, 2000 to December 31, 2004, with a resolution of 0.05 degrees, MODIS data, and the data format is .hdf. It can be opened with HDFView. The data quality is good. The missing dates are as follows: 2000 1 -54 132 219-230 303 2001 111 167-182 2002 079-086 099 105 2003 123 324 351-358 2004 219 349 The number after the year is the nth day of the year Pixel values ​​are as follows: 0: Snow-free land 1-100: Percent snow in cell 111: Night 252: Antarctica 253: Data not mapped 254: Open water (ocean) 255: Fill An example of file naming is as follows: Example: "MOD10C1.A2003121.004.2003142152431.hdf" Where: MOD = MODIS / Terra 2003 = Year of data acquisition 121 = Julian date of data acquisition (day 121) 004 = Version of data type (Version 4) 2003 = Year of production (2003) 142 = Julian date of production (day 142) 152431 = Hour / minute / second of production in GMT (15:24:31) The corner coordinates are: Corner Coordinates: Upper Left (70.0000000, 54.0000000) Lower Left (70.0000000, 3.0000000) Upper Right (138.0000000, 54.0000000) Lower Right (138.0000000, 3.0000000) Among them, Upper Left is the upper left corner, Lower Left is the lower left corner, Upper Right is the upper right corner, and Lower Right is the lower right corner. The number of data rows and columns is 1360, 1020 Geographical latitude and longitude coordinates, the specific information is as follows: Coordinate System is: GEOGCS ["Unknown datum based upon the Clarke 1866 ellipsoid",     DATUM ["Not specified (based on Clarke 1866 spheroid)",         SPHEROID ["Clarke 1866", 6378206.4,294.9786982139006,             AUTHORITY ["EPSG", "7008"]]],     PRIMEM ["Greenwich", 0],     UNIT ["degree", 0.0174532925199433]] Origin = (70.000000000000000, 54.000000000000000)

2020-10-12

Remote sensing inversion product of diurnal evapotranspiration in the middle reaches of Heihe River (2012)

Evapotranspiration monitoring is very important for agricultural water resource management, regional water resource utilization planning and sustainable development of social economy. The limitation of traditional monitoring et method is that it can't be observed in large area at the same time, so it can only be limited to the observation point. Therefore, the cost of personnel and equipment is relatively high. It can't provide the ET data of different land use types and crop types. Remote sensing can be used for quantitative monitoring of ET. the feature of remote sensing information is that it can reflect not only the macro structural characteristics of the earth's surface, but also the micro local differences. This data uses MODIS data and m-sebal model from June to September 2012 and time scale expansion scheme based on reference evaporation ratio to estimate the spatial and temporal distribution of evapotranspiration in the whole growth season of the middle reaches of Heihe River, and uses ground observation data to evaluate m-sebal model and time scale expansion scheme in detail. Its time resolution is day by day, spatial resolution is 250m, and data coverage is in the middle reaches of Heihe River, unit: mm. The projection information of the data is as follows: UTM projection, 47N.

2020-03-08