Current Browsing: 2008-07-14


Integrated remote sensing joint experiment of Heihe River: alos PALSAR remote sensing data set (2008)

The phased array type l-land synthetic aperture radar (PALSAR) is a phased array L-band SAR sensor mounted on alos satellite. The sensor has three observation modes: high resolution, scanning synthetic aperture radar and polarization, which make it possible to obtain a wider ground width than the general SAR. At present, there are 13 scenes of ALOS pallsar data in Heihe River Basin. The coverage and acquisition time are as follows: 1 scene in the northeast of Zhangye City, HH / HV polarization, 2008-04-25; 2 scenes in Binggou basin + Arjun encrypted observation area, HH / HV polarization, 2008-05-122008-06-27; 2 scenes in Dayekou basin + Yingke oasis intensified observation area, HH / HV polarization, 2008-05-122008-06-27; observation station encrypted observation area Survey area + Linze station densified observation area + Linze grassland densified observation area 2 scenes, HH / HV polarization, time 2008-05-122008-06-27; Linze station densified observation area 1 scene, HH / HV polarization, time 2008-05-12; Binggou basin densified observation area 1 scene, HH / HV polarization, time 2008-07-14; bindukou densified observation area 4 scenes, 2008-04-25 2 scenes, HH / HV polarization, 2008-06-10 2 scenes, HH pole Change. The product level is L1 without geometric correction. The alos PALSAR remote sensing data set of Heihe comprehensive remote sensing joint experiment was obtained from JAXA by Dr. Takeo tadono, researcher Ye Qinghua and Professor Shi Jiancheng (the cooperation project between Qinghai Tibet Institute of Chinese Academy of Sciences and JAXA). (Note: "+" means to overwrite at the same time)

2020-03-09

WATER: Dataset of TIR spectrum observations in the arid region hydrology experiment area and A'rou foci experiment area from Jun to Jul, 2008

The dataset of TIR spectral emissivity was obtained in the arid region hydrology experiment area and A'rou foci experiment area. Observations were by: (1) Spectral emissivity obtained from 102F at 2-25um in cooperation with the handheld infrared thermometer (BNU) for the surface radiative temperature and one au-plating board for downward atmospheric radiation. The radiative transfer equation and TES methods were applied to retrieve emissivity. The grassland and the concrete floor were measured on May, 27, 2008, the wheat field and the maize field at ICBC resort on May, 29, 2008, the concrete floor (multiangle measurements) at ICBC resort on Jun. 3, 2008, the bare soil and the maize leaf in Yingke oasis maize field on Jun. 22, 2008, the maize and wheat canopy in Yingke oasis maize field on Jun. 23, 2008, the rape field in Biandukou experimental area on Jun. 24, 2008, the alfalfa, the saline land, the grassland and the barley land on Jun. 26, 2008, the wheat field and the maize field in Yingke oasis maize field on Jun. 29, 2008, the desert bare land and vegetation (Reaumuria soongorica) in No. 2 Huazhaiai desert plot on Jun. 30, 2008, the rape field and the grassland in Biandukou experimental area on Jul. 6, 2008, and the grassland and the bare land (multiangle) in A'rou experimental area on Jul. 14, 2008. The cold blackbody calibration (*.CBX/*.CBB), the warm blackbody calibration (*.WBX/*.WBB), the ground objects measurements (*.SAX), au-plating board measurements, and the downward atmospheric radiation (*.DWX) were all needed during observation. Moreover, the spectral radiance and emissivity were also archived. The response function of various bands could be acquired by 102F. And then emissivity of 2-25um could be retrieved. Two results of emissivity were developed: one was direct from 102F and the other was retrieved by ISSTES (Iterative spectrally smooth temperature-emissivity separation). Spectral resolution for raw data and proprecessed data was 4cm-1. (2) Spectral emissivity obtained from BOMAN at 2 -13μm in cooperation with the blackbody barrel and the blackbody from Institute of Remote Sensing Applications and the blackbody (BNU). The desert was measured on Jun. 30 and Jul. 1, 2008, A'rou foci experimental area on Jul. 14, 2008, indoor observations on the deep and shallow layer soil, vegetation, small stones, two maize plants from Yingke No.2 (YKYZYMD02) field and one maize plant and bare land from No. 3 (YKYZYMD03)field on on Jul. 16, 2008, Linze experimental area on Jul. 17, 2008, and gobi on Jul. 18, 2008. The sample site, coordinates, time and photos were all archived. During each observation, BOMAN was preheated and the blackbody was set at the predicted target temperature, which would be changed after the infrared radiation of the blackbody was measured by BOMAN. And then the target infrared radiation, the downward atmospheric radiation (reflected by the au-plating board) and the infrared radiation of the blackbody would be measured one by one. Raw data were archived in Igm, and after processed by FTSW500, the result was Rad (radiation). Finally, Rad would be changed into txt files by Matlab programs.

2019-09-14

WATER: Dataset of ground truth measurements synchronizing with Envisat ASAR in the A'rou foci experimental area on Jul. 14, 2008

The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 14, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:31 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Those provide reliable ground data for retrieval and validation of soil moisture from active remote sensing approaches. Observation items included: (1) soil moisture by POGO soil sensor in No. 1, 2 and 3 quadrates; 25 corner points of each subsite were chosen for the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity; (2) the soil temperature by the handheld infrared thermometer 3# and 5# from BNU in No. 1 quadrate, 1# and 4# in No. 2 quadrate, and 2# and 6# in No. 3 quadrate; 25 corner points of each subsite were measured twice by two groups, and time, the maximum, the minimum and the mean value, and the land cover types were all recorded. (3) spectrum of the grassland, the bare land and the stellera by the thermal infrared spectrometer, 102F. The dataset includes ASAR images, preprocessed data of the thermal infrared spectrometer, 102F, the surface temperature and soil moisture synchronizing with Envisat ASAR.

2019-05-23

WATER: Dataset of GPS radiosonde observations

The dataset of GPS radiosonde observations was obtained at an interval of 2 seconds in the cold region hydrology experimental area in March, 2008 and the arid region hydrology experimental area from May to July, 2008. The items were the air temperature, relative humidity, air pressure, the dew temperature, the water vapor mixing ratio, latitudinal and longitudinal wind speeds, the wind speed and direction. Simultaneous with the satellite/airplane overpass, GPS radiosonde observations were carried out: Binggou watershed on Mar. 14, A'rou on Mar. 15, Binggou watershed on Mar. 15, Biandukou on Mar. 17, Binggou watershed on Mar. 22, Binggou watershed on Mar. 29, and A'rou on Apr. 1 for the upper stream experiments; Linze grassland station on May 30, Yingke oasis on Jun.1, Huazhaizi desert station on Jun. 4, Linze grassland station on Jun. 5, Linze grassland station on Jun. 6, Huazhaizi desert station on Jun. 16, Yingke oasis on Jun. 29, Binggou watershed on Jul. 5, Yingke oasis on Jul. 7, Linze grassland station on Jul. 11, and Yingke oasis at 0, 4:10, 8:09, and 12:09 on Jul. 14 for middle stream experiments.

2019-05-23