Current Browsing: Temperature


Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Daman superstation, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

2020-07-25

Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

2020-06-24

Nonstandard weather station diurnal data of Inner Mongolia Reach of the Yellow River’s Upstream (1956-2006)

I. Overview This data set contains daily meteorological data from the Inner Mongolia section of the Yellow River from Wuhai to Dalat Banner from 1952 to 2006. Non-standard station data includes two elements, namely: temperature and precipitation. Ⅱ. Data processing description The data is stored as integers, the temperature unit is (0.1 ° C) value, the precipitation unit is (0.1 mm), and it is stored as an ASCII text file. Ⅲ. Data content description Standard station data, temperature and precipitation are stored separately, which are temperature file and precipitation file. Ⅳ. Data usage description In terms of resources and environment, meteorological data is used to simulate the regional climate change and runoff, sediment, water and soil loss and vegetation changes in the basin, and is also a necessary input condition for remote sensing inversion.

2020-06-05

Temperature and precipitation dataset of WRF model in Northwest China (1979-2013)

This data is the NCEP/DOE reanalysis data of 6h interval nested downscaling by WRF model in northwest China to a horizontal resolution of 12km, 364 grid points in the east-west direction, 251 grid points in the north-south direction and 31 layers in the vertical direction. The simulation time starts from 1979-01-01,06:00:00 and ends at 2013-12-31,23:00:00. The parameterization schemes of the model are as follows: Kain Frisch cumulus convection scheme, WSM3 cloud microphysics scheme, RRTM long wave scheme, Dudhia short wave scheme, Noah land surface model, YSU planetary boundary layer scheme. The file naming rules in the data set are: wrf_t2_YYYY.nc and wrf_rain_YYYY.nc, where YYYY is the annual abbreviation, t2 is the 2m temperature (unit ℃), and rain is the total surface precipitation (unit mm).

2020-03-28

Dataset of water level at the Sidalong Sub-Basin in Qilian Mountain (2011)

This data is the water level data of 2011-2012, which is observed by water level recorder. From July 14 to September 9, 2011, the observation was recordered every five minutes; from June 4 to July 10, 2012, the observation was recordered every ten minutes. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. The data shall be opened with HOBO software.

2020-03-14

Dataset of automatic meteorological observations at the Sub-Basin in Qilian Mountain (2011-2012)

The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.

2020-03-13

Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2011)

1. Data overview In 2011, the manual observation data set of standard meteorological field of Qilian station was used to observe various meteorological elements at 8:00, 14:00 and 20:00 every day. 2. Data content Data content includes dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum ground temperature and minimum ground temperature. 3. Time and space Geographic coordinates: longitude: 99.9e; latitude: 38.3n; altitude: 2980m

2020-03-11

Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2013)

1. Data overview: In 2013, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e; Latitude: 38.3n; Height: 2980 m.

2020-03-11

Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2012)

1. Data overview: In 2012, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e;Latitude: 38.3n;Height: 2980 m.

2020-03-11

Simulated meteorological forcing data of three kilometers and six hours in Heihe River basin (2011-2016)

In east Asia, institute of atmospheric physics, Chinese Academy of Sciences key laboratory of regional climate and environment development of regional integration environment with independent copyright system model RIEMS 2.0, on the basis of the regional climate model RIEMS 2.0 in the United States center for atmospheric research and the development of the university of binzhou mesoscale model (MM5) is a static dynamic framework, coupled with some physical processes needed for the study climate solutions.These processes include the biosphere - atmosphere transmission solutions, using FC80 closed Grell cumulus parameterization scheme, MRF planetary boundary condition and modify the CCM3 radiation, such as the heihe river basin observation and remote sensing data of important parameters in the model for second rate, USES the heihe river basin vegetation data list data of land use in 2000 and 30 SEC DEM data in heihe river basin, build up suitable for the study of heihe river basin ecological - hydrological processes of the regional climate model. Drive field: ERA-INTERIM reanalysis data Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 2011 to December 31, 2016, with an interval of 6 hours Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) college usurf for short 2) Anemometer south wind(m/s), vsurf for short College 3) Anemometer temperature (deg) K tsurf College 4) maximal temperature (deg) K tmax 5) minimal temperature (deg K) abbreviated as tmin 6) college Anemom specific humidity (g/kg) college qsurf for short 7) value (mm/hr) is simply value p College 8) Accumulated evaporation (mm/hr) evap 9) sensible heat (watts/m**2/hr) for short College 10) Accumulated net infrared radiation (watts/m * * 2 / hr) netrad for short College definition file name: -erain-xiong. Month and year

2020-03-11