Current Browsing: the artificial oasis experimental area in the middle reaches


HiWATER:Dataset of soil freeze/thaw experiment observed in the middle reaches of the Heihe River Basin from Nov. 21 to Nov. 22, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 21-22, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 21-22, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, which can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of soil freeze/thaw experiment observed in the middle reaches of the Heihe River Basin from Nov. 19 to Nov. 20, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 19 to 20, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 19-20, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of soil freeze/thaw experiment observed in the middle reaches of the Heihe River Basin from Nov. 18 to Nov. 19, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 18 to 19, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 18-19, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 3.5m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of Soil freeze/thaw experiment Observed in the middle of Heihe River Basin from Nov. 17 to Nov. 18, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 17 to 18, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 17-18, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 3.6m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of Soil freeze/thaw experiment observed in the midstream of the Heihe River Basin from Nov. 15 to Nov. 16, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 15-16, 2013 in the farmland of jiushe, Kangning, Zhangye City, Gansu Province. The surface temperature includes the soil temperature data observed by the temperature sensor at the soil depth of 0 cm, 1 cm, 3 cm, 5 cm and 10 cm. The time frequency of conventional observation of soil temperature is 5 minutes. Data details: 1. Time: November 15-16, 2013 2. data: Bright temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz v-polarization and H-polarization data (10.65ghz band instrument damaged) Soil temperature: use the sensor installed on dt85 to measure the soil temperature of 0cm, 1cm, 3cm, 5cm and 10cm Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 4.8m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Daman irrigation district (July 26, 2012)

On July 26, 2012, the airborne ground synchronous observation was carried out in the plmr quadrat in the dense observation area of Daman. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the matrix of the dense observation area of Daman, and the detailed plan with an area of 3.0KM × 2.4km is selected to carry out synchronous observation on the underlying surface of oasis. The selection of the sample is mainly based on the representativeness of the surface coverage, accessibility and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 5 splines (east-west distribution) were collected at an interval of 450 m in the east-west direction. Each line has 31 points (north-south direction) at an interval of 100 m, and 5 hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 150 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.

2020-03-13

HiWATER: Dataset of ground truth measurements synchronizing with TerraSAR-X satellite overpassing in the Daman Superstation on June 26, 2012

On June 26, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5m intervals. Each line has 21 points (north-south direction) at 5m intervals. Three hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 440 points on the quadrat were obtained, and each point was observed twice, i.e. two times in each sampling point, one time inside the film (marked as a in the data record) and one time outside the film (marked as B in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked as B in the two data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: The data format of this data set is vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.

2020-03-13

HiWATER: Dataset of ground truth measurements synchronizing with TerraSAR-X satellite overpassing in the Daman Superstation (June 15, 2012)

On June 15, 2012, the satellite transit ground synchronous observation was carried out in the TerraSAR-X sample near the super station in the dense observation area of Daman. TerraSAR-X satellite carries X-band synthetic aperture radar (SAR). The daily transit image is HH / VV polarized, with a nominal resolution of 3 m, an incidence angle of 22-24 ° and a transit time of 19:03 (Beijing time), which mainly covers the ecological and hydrological experimental area of the middle reaches artificial oasis. The local synchronous data set can provide the basic ground data set for the development and verification of active microwave remote sensing soil moisture retrieval algorithm. Quadrat and sampling strategy: Six natural blocks are selected in the southeast of the super station, with an area of about 100 m × 100 m. One plot in the northwest corner of the sample plot is watermelon field, others are corn. The basis of sample selection is: (1) considering different vegetation types, i.e. watermelon and corn; (2) considering the visible light pixel, the sample size of 100m square can guarantee at least 4 30 M-pixel is located in the sample; (3) the location of the sample is near the super station, with convenient transportation. The observation of the super station is in the north, and there is a water net node on both sides of the East and the west, which makes it possible to integrate these observations in the future; (4) in addition, there are some obvious points around the sample, which can ensure that the geometric correction of the SAR image is more accurate in the future. Considering the resolution of the image, 21 splines (distributed from east to West) are collected at 5 m intervals. Each line has 23 points (north-south direction) at 5 m intervals. Four hydroprobe data acquisition systems (HDAS, reference 2) are used to measure at the same time. The sampling interval is controlled by the scale and moving splines on the measuring line to make up for the lack of using hand-held GPS. Measurement content: About 500 points on the quadrat were obtained, and each point was observed twice, i.e. in each sampling point, once in the film (marked a in the data record) and once out of the film (marked b in the data record); although the watermelon land was also covered with film, considering that it was not laid horizontally, only the soil moisture at the non covered position was measured (marked b in both data records). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. The vegetation team completed the measurement of biomass, Lai, vegetation water content, plant height, row ridge distance, chlorophyll, etc. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.

2020-03-13

HiWATER: Dataset of differential GPS in the middle and upper reaches of the Heihe River Basin (2012)

The purpose of differential GPS positioning survey is to unify multiple survey areas into the same coordinate system and realize accurate absolute positioning through joint survey with national high-level control point coordinates. Under the national geodetic coordinate system of 2000, the accurate positioning of flux observation matrix, hulugou small watershed, tianmuchi small watershed and dayokou watershed and target is completed. In order to realize the geometric correction and absolute positioning of optical image, SAR image and airborne lidar data, the layout of ground control points and high-precision measurement are completed. In the middle reaches of the area, one national high-level control point is jointly surveyed in the five directions of East, South, West, North and middle. Measuring instrument: There are 3 sets of triple R8 GNSS system. Measurement principle: For the control network encryption point, it is connected with the high-level known points in four quadrants around the survey area and distributed evenly in the survey area. For the ground control point (GCP), the obvious characteristic points (such as house corner, road intersection, inflection point, etc.) of the ground layout target and the independent ground objects are adopted and evenly distributed in the survey area. For the ground points with high accuracy requirements, the principle of average value of multiple (at least three) measurements is adopted. Measurement method: In the test area, the control network is encrypted, and GPS static measurement and national high-level control network are used for joint measurement and calculation. During measurement, multiple GPS receivers conduct static synchronous observation at different stations, and the observation time is strictly in accordance with the control network measurement specifications. The ground points in the test area are accurately located. GPS-RTK positioning technology is used and the national high-level control points are used to calibrate to the local coordinate system. When the mobile station obtains the fixed solution during the coordinate acquisition, the measurement is carried out again and the single measurement lasts for 5S. Measuring position: (1) Flux observation matrix 17 stations, Las tower, waternet, soilnet and bnunet nodes in the core area of flux observation matrix; ground control points in CASI flight area; ground corner reflector positions in radar coverage area; ground target positions in lidar flight area. (2) Hulugou small watershed Ground target location of lidar flight area. (3) Tianmuchi small watershed Ground target location of lidar flight area. (4) Dayokou Basin Satellite image geometric correction ground control point. Data format: GPS static survey, the original data format is ". Dat" and ". T01" (or ". T02") files (or converted renix data) and "field record". GPS-RTK survey, the original project is ". Job" file (or converted ". DC" file). The test results are submitted in the format of exported ". CSV" data, which can be viewed and edited by Excel software. Measurement time: June 19, 2012 to July 30, 2012

2020-03-13

HiWATER: Dataset of hydrometeorological observation network (large aperture scintillometer of Daman superstation, 2017)

The data set contains the flux observation data of large aperture scintillator from daman station in the middle reaches of heihe hydrometeorological observation network.Large aperture scintillators of BLS450 and BLS900 models were installed at daman station in the middle reaches of China. The north tower was the receiving end of BLS900 and the transmitting end of BLS450, and the south tower was the transmitting end and the receiving end of BLS900.The observation period is from January 1, 2017 to December 31, 2017.The station is located in dazman irrigation district, zhangye city, gansu province.The latitude and longitude of the north tower is 100.3785 E, 38.8607 N, and the latitude and longitude of the south tower is 100.3685 E, 38.8468 N, with an altitude of about 1556m.The effective height of the large aperture scintillator is 22.45m, the optical diameter length is 1854m, and the sampling frequency is 1min. Large aperture flicker meter raw observation data for 1 min, data released for after processing and quality control of data, including sensible heat flux is mainly combined with the automatic meteorological station observation data, based on similarity theory alonzo mourning - Mr. Hoff is obtained by iterative calculation, the quality control of the main steps include: (1) excluding Cn2 reach saturation data (Cn2 e-13 > 1.43);(2) data with weak demodulation signal strength (Average X Intensity<1000) were eliminated;(3) data at the time of precipitation were excluded;(4) data of weak turbulence under stable conditions were excluded (u* < 0.1m/s).In the iterative calculation process, the stability universal function of Thiermann and Grassl(1992) was selected. Please refer to Liu et al(2011, 2013) for detailed introduction.Due to instrument failure, data of large aperture scintillator was missing from June 6 to July 2, 2017. Some notes on the released data :(1) the middle LAS data is mainly BLS900, the missing time is supplemented by BLS450 observation, and the missing time of both is marked with -6999.(2) data table head: Date/Time: Date/Time (format: yyyy/m/d h:mm), Cn2: structural parameters of air refraction index (unit: m-2/3), H_LAS: sensible heat flux (unit: W/m2).The meaning of data time, such as 0:30 represents the average between 0:00 and 0:30;The data is stored in *.xls format. Please refer to Li et al. (2013) for hydrometeorological network or site information, and Liu et al. (2011) for observation data processing.

2020-03-05