Current Browsing: the artificial oasis experimental area in the middle reaches


HiWATER: Wide-angle infrared dual-mode line/area array scanner, WIDAS(1th, August, 2012)

On 1 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the upper reaches of the Heihe River Basin. WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-13

HiWATER: Dataset of hydrometeorological observation network (No.3 runoff observation system of Railway bridge on the Heihe River, 2014)

This dataset contains data on river water level and flow velocity at No.3 in the intensive runoff observation in the middle reaches of Heihe River runoff from July 28, 2014 to December 31, 2014. The observation point is located at Heihe Bridge, Lan-Xin Railway, Zhangye City, Gansu Province. The riverbed is gravel and the section is stable. The latitude and longitude of the observation point is N39°2'33.08", E100°25'49.42", the altitude is 1443 meters, and the river channel width is 50 meters. The water level observation is measured by SR50 ultrasonic range finder with a frequency of 60 minutes. The flow profile observation is conducted by StreamPro micro ADCP. The data declaration includes the following two parts: Water level observation, the observation frequency is 60 minutes, unit (cm); data covering time period from July 28, 2014 to December 31, 2014; Flow observation, unit (m3); monitoring flow and obtaining water level flow curve according to different water levels. The process of the runoff changing is obtained by observing the water level process. The missing data is uniformly represented by the string -6999. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to He et al. (2016).

2019-09-13

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix(automatic meteorological station of No.4)

This dataset contains the automatic weather station (AWS) measurements from site No.4 in the flux observation matrix from 10 May to 17 September, 2012. The site (100.35753° E, 38.87752° N) was located in a residential area in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1561.87 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45C; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (010C/020C; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-13

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (NO.2 large aperture scintillometer)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.2 in the flux observation matrix. There were two types of LASs at site No.2: German BLS900 and German BLS450. The observation periods were from 7 June to 19 September, 2012, and 18 June to 19 September, 2012, for the BLS900 and the BLS450, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of BLS450, and the south tower is placed with the transmitter of BLS900 and the receiver of BLS450. The site (north: 100.363° E, 38.883° N; south: 100.362° E, 38.857° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 2841 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>4.08E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; BLS450: Minimum X<50). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the BLS450. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-13

HiWATER: Airborne CCD image data in the middle of Heihe River Basin on Aug. 01 ,2012

On 1 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area. WIDAS includes a CCD camera with a spatial of resolution 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.

2019-09-13

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of intensive runoff observations of No.6 in the middle reaches of the Heihe River Basin

The No. 6 hydrological section is located at Ban Heihe River Bridge (39°15′32.41″ N,100°16′33.95″ E, 1398 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.6 hydrological section from 19 June, 2012, to 10 August, 2012. The width of this section is 270 meters. The water level was measured using HOBO pressure range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-13

HiWATER: Land surface temperature product in the middle reaches of the Heihe River Basin (10th, July, 2012)

On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 2500 meters. Land surface temperature product was obtained at a resolution of 3 m using a modified temperature/emissivity separation algorithm based on TASI surface radiance data. The product were validated with in situ ground measurements. The validation results indicated that the Land surface temperature product agreed with the ground LSTs well with RMSE lower than 1.5 K.

2019-09-13

HiWATER: Dataset of scintec flat array sodar in the villiage of Wuxing, Xiaoman Town

This mesurement aims to obtain the wind direction, wind speed, and disturbance characteristics of the lower atmosphere. The observation period is from 25 June to 17 Septemper, 2012 (UTC+8). Measurement instruments: Germany Scintec MFAS Flat Array Sodar Measurement position: 60 meters northwest of Daman Super Station Measurement period: 25 June to 17 Septemper, 2012. 24 hours of uninterrupted obeservation. Automatically Recorded Data every half hour. Data contents: We obtain one data file every day. The data contents include observation height, wind speed, wind direction, wind speed in east – west direction, wind speed in south – north direction, vertical wind speed, standard deviation of vertical wind speed, backscatter intensity. Remarks: The prectical obsevation height changes with the air water vapor content. Our obsevation point is located in the arid region. The air water vapor content is very low. Therefore the maximum obsevation height is about 300 meters. When it rains or very windy and dusty, the backscatter intensity is very high. Then the data would be miss or only has the vertical wind speed and backscatter intensity.

2019-09-13

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12) -dataset of intensive runoff observations of No.1 in the middle reaches of the Heihe River Basin

The No. 1 hydrological section is located at 213 Heihe River Bridge (38°54′43.55″ N, 100° 20′41.05″ E, 1546 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.1 hydrological section from 13 June, 2012, to 24 November, 2012. This section consists of two river sections, i.e., the east section is marked as No. 1 and the west section is marked as No. 2. The width of this section is 330 meters. This section consists of a gravel bed; the cross-sectional area is unstable because of human factors. The water level was measured using SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-13

HiWATER: Dataset of flux observation matrix (No.14 eddy covariance system) of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces (2012)

This dataset contains the flux measurements from site No.14 eddy covariance system (EC) in the flux observation matrix from 30 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-13