Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (eddy covariance system of Alpine meadow and grassland ecosystem Superstation, 2018)

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (eddy covariance system of Alpine meadow and grassland ecosystem Superstation, 2018)


This dataset contains the flux measurements from the Alpine meadow and grassland ecosystem Superstation superstation eddy covariance system (EC) belonging to the Qinghai Lake basin integrated observatory network from September 2 to December 18 in 2018. The site (98°35′41.62″E, 37°42′11.47″N) was located in the alpine meadow and alpine grassland ecosystem, near the SuGe Road in Tianjun County, Qinghai Province. The elevation is 3718m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3A &EC150) was about 0.17 m.

The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Data during December 18 to December 24, 2018 were missing due to the data collector failure.

The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.


File naming and required software

Year+** observatory network+ site no + EC.


Data Citations Data citation guideline What's data citation?
Cite as:

Li, X. (2019). Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (eddy covariance system of Alpine meadow and grassland ecosystem Superstation, 2018). A Big Earth Data Platform for Three Poles, DOI: 10.11888/Meteoro.tpdc.270802. CSTR: 18406.11.Meteoro.tpdc.270802. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Li, X.Y., Yang, X.F., Ma, Y.J., Hu, G.R., Hu, X., Wu, X.C., Wang, P., Huang, Y.M., Cui, B.L., & Wei, J.Q. (2018). Qinghai Lake Basin Critical Zone Observatory on the Qinghai-Tibet Plateau. Vadose Zone Journal, 17(1).( View Details | Bibtex)

2. Li, X.Y., Ma, Y.J., Huang, Y.M., Hu, X., Wu, X.C., Wang, P., Li, G.Y., Zhang, S.Y., Wu, H.W., Jiang, Z.Y., Cui, B.L., & Liu, L. (2016). Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 121(18), 10470-10485.( View Details | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Zhang, S.Y., Li, X.Y., Zhao, G.Q., &Huang, Y.M. (2016). Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Ecohydrology, 9(2), 267-279. (View Details )

2.Zhang, S.Y., Li, X.Y., Ma, Y.J., Zhao, G.Q., Li, L., Chen, J., Jiang, Z.Y., & Huang, Y.M. (2014). Interannual and Seasonal Variability in Evapotranspiration and Energy Partitioning over the Alpine Riparian ShrubMyricaria SquamosaDesv. on Qinghai-Tibet Plateau. Cold Regions Science and Technology, 102, 8-20. (View Details )

3.Yu, G.R., Zhu, X.J., Fu, Y.L., He, H.L., Wang, Q.F., Wen, X.F., Li, X.R., Zhang, L.M., Zhang, L., Su, W., Li, S.G., Sun, X.M., Zhang, Y.P., Zhang, J.H., Yan, J.H., Wang, H.M., Zhou, G.S., Jia, B.R., Xiang, W.H., Li, Y.N., Zhao, L., Wang, Y.F., Shi, P.L., Chen, S.P., Zhao, F.H., Wang, Y.Y., & Tong, C.L. (2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798–810. (View Details )

4.Gu, S., Tang, Y.H., Du, M.Y., Kato, T., Li, Y.N., Cui, X.Y., &Zhao, X.Q. (2003). Short term variation of NEE in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau, Journal of Geophysical Research, 108(D21), 4670. (View Details )

5.Fu, Y., Zheng, Z., Yu, G., Hu, Z., Sun, X., Shi, P., Wang, Y., & Zhao, X. (2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879–2893. (View Details )

6.Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306. (View Details | Download )

7.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., &Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140. (View Details | Download )

8.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., &Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. (View Details | Download )

9.Song, L.S., Liu, S.M., Kustas, W.P., Zhou, J., Xu, Z.W., Xia, T., & Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231, 8-19. (View Details | Download )

10.Song, L.S., Kustas WP, Liu, S.M., Colaizzi PD, Nieto H, Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam, N., Tolk, J., & Evett, S. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, doi:10.1016/j.jhydrol.2016.06.034. (View Details )

11.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., & Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 230-231, 45-57. (View Details )

12.Xu, T.R., Bateni, S.M., & Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. (View Details )

13.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., &Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. (View Details )

14.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., & Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. (View Details | Download )

15.Su, P.X., Yan, Q.D., Xie, T.T., Zhou,Z.J., & Gao, S. (2012). Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species. Acta Physiologiae Plantarum, 34(6), 2057-2068. (View Details )

16.Zhu, Z.L., Tan, L., Gao, S.G., &Jiao, Q.S. (2015). Oberservation on soil moisture of irrigated cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3), 472-476. (View Details )

17.Ge, Y., Liang, Y.Z., Wang, J.H., Zhao, Q.Y., &Liu, S.M. (2015). Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3), 656-660. (View Details )

18.Ma, Y.F., Liu, S.M., Zhang, F., Zhou, J., &Jia, Z.Z. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3), 671-675. (View Details )

19.Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., &Song, L. (2015). Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5), 943-947. (View Details | Download )

20.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., &Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Science China Earth Science, 58(2), 211-230. (View Details | Download )

21.Xu, T., Liu, S., Xu, L., Chen ,Y., Jia, Z., Xu, Z., &Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing, 7(3), 3400-3425. (View Details | Download )

22.Song, L.S., Liu, S.M., William Kustas, P., Zhou, J., &Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. (View Details | Download )

23.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., &Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details | Download )

24.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., &Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details )

25.Li, Y., Sun, R., &Liu, S.M. (2015). Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. Science China Earth Sciences, 58(5), 755-769. (View Details | Download )

26.Xu, Z.W., Liu, S.M., Li, X., Shi, S.J., Wang, J.M., Zhu, Z.L., Xu, T.R., Wang, W.Z., &Ma, M.G. (2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research, 118, 13140-13157. (View Details | Download )

27.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., &Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details )


Support Program

Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program (No:XDA20000000)

Copyright & License

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comments

Current page automatically show English comments Show comments in all languages

Download Follow
Keywords
Geographic coverage
East: 98.58 West: 98.58
South: 37.70 North: 37.70
Details
  • Temporal resolution: Hourly
  • File size: 0.67 MB
  • Views: 6688
  • Downloads: 80
  • Access: Requestable
  • Temporal coverage: 2018-09-11 To 2019-12-27
  • Updated time: 2021-04-19
Contacts
: Li Xiaoyan  

Distributor: A Big Earth Data Platform for Three Poles

Email: poles@itpcas.ac.cn

Attachments
Export metadata