数据内容:咸海流域2019年归一化植被指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD13A2产品第一波段作为归一化植被指数数据,乘以比例因子0.0001。 数据质量:空间分辨率为1000m×1000m,时间分辨率为一个月,每个像元的值为每个月的归一化植被指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2019年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年土壤湿度数据。 数据来源及加工方法:来源于美国国家航空航天局,对每天的土壤湿度数据相加得到各月土壤湿度之和,再除以天数得到每月土壤湿度的平均值。 数据质量:空间分辨率为0.25°×0.25°,时间分辨率为月,每个像元的值为每月土壤湿度的平均值。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布
刘铁
数据内容:咸海流域2019年叶面积指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD15A2产品第二波段作为叶面积指数数据,乘以比例因子0.1。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天叶面积指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年蒸散发数据集。 数据来源及加工方法:借助IDL平台,利用SEBS算法和美国国家航空航天局中分辨率成像光谱仪(MODIS)相关数据,求出2019年咸海流域蒸散发结果。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据和生态数据相结合分析土地退化和水资源利用效率情况。
刘铁
数据内容:咸海流域2015年-2018年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 咸海流域边界说明:咸海流域的边界来源于世界自然基金会的HydroBASINS Version 1,详细信息请参考:https://www.hydrosheds.org/page/hydrobasins 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2015年-2018年叶面积指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD15A2产品第二波段作为叶面积指数数据,乘以比例因子0.1。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天叶面积指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件