基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序EVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过EVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了背景调节参数C1,C2和大气修正参数L进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:EVI相比于NDVI具有较强的抗大气干扰能力以及抗噪音能力,更适用于气溶胶含量较高的天气状况下,以及植被茂盛区。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序MSAVI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过MSAVI的计算公式进行生产的,即在SAVI的基础上,针对SAVI在植被覆盖茂盛区表现不敏感的问题进行了改进,具体的计算方法参照Qi,1994文献;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数在植被茂盛覆盖区域较为稳定,而在植被稀疏区表现不敏感。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NBR产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NBR的计算公式进行生产的,即利用近红外波段和短波红外波段的比值来增强火烧迹地的特征信息,具体计算公式为(近红外波段-短波红外波段2)/(近红外波段+短波红外波段2);3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数常被用于火烧迹地信息提取以及监测火烧区域植被的恢复状况。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDMI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDMI的计算公式进行生产的,即利用近红外与短波红外之间的差异来定量化反映植被冠层的水分含量情况;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:NDMI与冠层水分含量高度相关,可以用来估计植被水分含量,而且NDMI与地表温度之间存在较强的相关性,因此也常用于分析地表温度的变化情况。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的计算公式进行生产的,即通过计算近红外波段和红波段之间的差异来定量化植被的生长状况,具体公式为:(近红外波段-红波段)/(近红外波段+红波段);3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数可反映植被的健康情况及植被的长势,由于计算简单,指示性好,被广泛应用于农业、林业、生态环境等领域,同时也是生态物理参数反演的重要输入参数,是目前应用最为广泛的植被指数之一。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序SAVI。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SAVI的计算公式进行生产的,即并在NDVI计算公式的基础上引入了土壤调节因子S进行计算的。3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数在植被稀疏区域较为稳定,而在植被覆盖茂盛区域不敏感。
彭燕
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序SI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SI的计算公式进行生产的,即根据红光波段和蓝光波段开展乘积平方根计算即可得到,基于红光波段和蓝光波段能够很好地反映土壤盐分的原理;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数能很好的反映土壤的盐分程度,可用于定量化评价盐渍化土壤。
彭燕
1)数据内容:本数据集包含2010-2019年青藏高原地区30米分辨率叶面积指数遥感产品。2)数据来源及加工方法:利用Landsat时间序列数据和物理机理模型反演得到的年最大合成叶面积指数产品。3)数据质量描述: 利用模拟数据的验证结果表明,产品的root-mean-square error(RMSE)约为1.16。4) 数据应用成果及前景:叶面积指数高度综合了植被的水平覆盖状况和垂直结构,是植被冠层的重要结构参数,该数据集可为陆面过程模拟、资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序FVC产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDVI的像元二分模型进行反演的,裸土的NDVI值设为0.01,纯植被的NDVI值设为0.88;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:植被覆盖度是生态学的重要参数,广泛应用于生态环境监测研究。
张兆明
1)数据内容:本数据集包含从1980s-2019年青藏高原地区长时序30米分辨率火烧迹地产品。2)数据来源及加工方法:基于时间序列Landsat地表反射率和火烧迹地敏感光谱参量,利用机器学习算法研发并生产的30米分辨率火烧迹地产品;3)数据质量描述:产品总体精度在90%以上。4) 数据应用成果及前景:该数据集可为火灾监测、碳排放研究、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序地表温度产品。2)数据来源及加工方法:利用中国遥感卫星地面站接收存档的Landsat数据和实用单通道算法反演得到;3)数据质量描述:root-mean-square error (RMSE)约为1.23K。4) 数据应用成果及前景:地表温度是一个常用的陆地表面参数,该数据集可为资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含从2000-2019年青藏高原地区MODIS长时序光合有效辐射分数(FPAR)产品、地表总初级生产力产品(GPP)产品、Npp产品、蒸散发产品(ET)和叶面积指数(LAI)产品。2)数据来源及加工方法:FPAR产品和LAI产品来自第六版MODIS Terra MOD15A2H产品集,GPP和NPP产品均来自MODIS Terra MOD17A2H产品集,蒸散发产品来自MODIS Terra MOD16A2;通过USGS网站下载,利用GDAL插件进行拼接和转投影得到;3)数据质量描述:每种产品均有相应的质量文件,标识了云、雪、无效值等,以有效位编码方式存储。4)数据应用成果及前景:在森林、农业、生态等领域长时序信息挖掘分析方面具有重要的应用价值。
贡成娟
该图集包括《青藏高原荒漠生态系统类型分布图》、《青藏高原农牧业适宜区分布图》和《青藏高原荒漠生态系统荒漠化发展趋势图》三幅专题地图。专题地图时间跨度是2010-2020年。原始气候数据来自于TerraClimate月尺度气候数据集,其空间分辨率为1/24°(约4 km),预处理将数据插值到30m。《青藏高原荒漠生态系统类型分布图》基于遥感影像、野外调查结果,综合国内现有的荒漠化评估体系及国际上大多数学者公认的荒漠生态系统分级标准,制定青藏高原荒漠生态系统的详细分类细则,引入机器学习、随机森林(RF)和支持向量机(SVM)等算法,进行青藏高原荒漠生态系统空间分布图编制。《青藏高原农牧业适宜区分布图》反映农牧业产品的供给服务,首先对青藏高原现代荒漠生态系统植被生产力进行评估,评估结果将显示该区域内潜在饲草供应量的空间分布,同时基于USDA的经验设定放牧红线,包括:1)潜在年均植被生物量小于225kg/ha;2)距离水源大于1.6km;3)坡度大于65%;4)高强度侵蚀区域。经红线排除区域将严格禁止放牧活动的发生。其次,通过有关文献检索,整理了近5年青藏高原内部及周边主要作物的种植区域,包括青稞、枸杞和小麦,基于现有种植区的气候及地质环境的最大信息熵分析,评估三种作物在青藏高原荒漠生态区的生长适应性,以求在青藏高原荒漠生态地区开发新的农业种植区。《青藏高原荒漠生态系统荒漠化发展趋势图》基于青藏高原现代荒漠生态系统与21世纪初期的历史荒漠化状况之间的对比,诊断了20年间该地区荒漠生态系统的演变格局,并在假设未来50a内气候变化趋势稳定的情景下模拟青藏高原荒漠生态系统产生与消退概率。此概率分布图将作为评定未来50a内青藏高原荒漠生态系统保护与开发适宜性的重要参考。本图集对于监测青藏高原荒漠生态系统、开发利用青藏高原荒漠生态系统服务功能有参考价值。
王训明
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件