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Abstract

Permafrost on the Qinghai–Tibet Plateau (QTP) has undergone degradation as a

result of recent climate change. This may alter the thermo-hydrological processes

and unlock soil organic carbon, and thereby affect local hydrological, ecological, and

climatic systems. The relationships between permafrost and climate change have

received extensive attention, and in this paper we review climate change for perma-

frost regions of the QTP over the past 30 years. We summarize the current state and

changes in permafrost distribution and thickness, ground temperature, and ground

ice conditions. We focus on changes in permafrost thermal state and in active-layer

thickness (ALT). Possible future changes in ground temperature and ALT are also dis-

cussed. Finally, we discuss the changes in hydrological processes and to ecosystems

caused by permafrost degradation. Air temperature and ground temperature in the

permafrost regions of the QTP have increased from 1980 to 2018, and the active

layer has been thickening at a rate of 19.5 cm per decade. The response of perma-

frost to climate change is not as fast as in some reports, and permafrost degradation

is slower than projected by models that do not account for conditions deep in

permafrost.
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1 | INTRODUCTION

Tectonic movements over 200 million years have raised the

Qinghai–Tibet Plateau (QTP) from below sea level in the Tethys

Sea to become the highest plateau of the mid- to low latitudes on

Earth. During uplift, the climate of the QTP gradually changed from

warm and humid to cold and dry, and permafrost formed as eleva-

tion increased. At the Last Glacial Maximum more than

20,000 years ago, at least 2.2 million km2, or 85% of the plateau,

was underlain by permafrost.1 Since then, the exent of permafrost

on the plateau has declined with Holocene climate warming. The

climate on most parts of the plateau is now characterized by low

humidity, low precipitation and strong solar radiation. It is particu-

larly sensitive to global climate change,2 due to its high altitude

with large dynamic and thermal effects, and is regarded as an indi-

cator region for global climate change.3–6 As a result of its altitude,

the QTP has the lowest mean annual air temperature (MAAT) for

its latitude; for instance, average January and July temperatures on

the QTP are 15–20�C lower than on the eastern plain of China.

However, the daily temperature range is larger than in the eastern

plain.7 The surface energy and water cycles of the QTP influence

the East Asian atmospheric circulation and global climate. The QTP

has the largest high-altitude permafrost zone of the middle and

low latitudes. Since the 1950s, the climate on the QTP has
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become warmer and wetter,8 with the warming rate almost twice

the global average.

Permafrost currently underlies approximately 1.06 × 106 km2 or

40% of the total area of the QTP,9 and permafrost thickness along the

Qinghai–Tibet Highway (QTH) varies from 10 to 312 m.10 As climate

warming proceeds, the permafrost area is shrinking, the permafrost

temperature is increasing, the active layer is thickening, and perma-

frost thinning has been widely recorded.11–13 The lower limit of per-

mafrost on north-facing slopes of the QTP has risen by 25 m in the

past 35 years, and the lower elevational limit of permafrost on south-

facing slopes has increased by 50–80 m in the past 20 years.11,14

Meanwhile, ground temperature at a depth of 6.0 m along the QTH

has increased by 0.08–0.55�C since 1996.12,15,16

Changes in permafrost conditions have affected the surface

energy balance and carbon cycles on the plateau.1,17–19 These

changes have increased the decomposition rate of organic matter fro-

zen within the permafrost and the rate of emission of greenhouse

gases,20,21 affecting the local and even the global climate system.22,23

The changes to permafrost have also affected the stability of engi-

neering structures,1 and will continue to affect infrastructure design,

construction, and maintenance in this region. Permafrost degradation

has caused changes in the ecological environment and to hydrological

processes, even leading to desertification.1,11,17

The Cryosphere Research Station on the Qinghai–Xizang Plateau,

Chinese Academy of Sciences, has established a long-term permafrost

monitoring network on the QTP. This paper summarizes the changes

in climate and active-layer thickness (ALT), ground temperature, and

permafrost thickness collected through this network, and also pre-

sents predictions of future permafrost changes.

2 | WARMING CLIMATE IN THE
PERMAFROST REGION

Meteorological stations on the QTP are sparsely and unevenly dis-

tributed. Most are located in cities on the eastern plateau, although

there are few in the vast western part, especially in the permafrost

regions at high altitude. Most previous studies have reported cli-

mate change on the entire QTP, indicating warming rates of

0.40–0.52�C per decade since the 1980s.8,24,25 The warming rate

has varied seasonally, especially in the high plain. For 1998–2012,

MAAT increased by 0.20�C per decade overall, but in the high plain

summer warming has been 0.34�C per decade. The rate has been

lower in spring and winter and there has been cooling in autumn.26

The increase in precipitation has been less apparent than for tem-

perature and has been spatially variable. From 1979 to 2001, pre-

cipitation rose by 4 mm per decade in the northwest of the plateau

and approximately 17 mm per decade in the southeast.27,28 The

increase in precipitation was not evident in the source region of the

Yangtze River, but was significant in the source region of the Yellow

River.29

The climate changes summarized above are for the entire plateau;

however, in the permafrost regions, with limited data acquisition, the

characteristics of climate change are less well understood. Data from

eight meteorological stations in the permafrost regions reveal the

characteristics of climate change over 37 years (1981–2017) (Table 1

and Figure 1).

In permafrost regions of the QTP, MAAT has been below 0�C in

all stations except Gaize (0.64�C). The lowest MAAT, −4.82�C, was

recorded at Wudaoliang. Annual precipitation was between 300 and

550 mm at all stations except 181.8 mm at Gaize (Table 1). The aver-

age rate of increase in MAAT was 0.62�C per decade at the eight sta-

tions, indicating warming in the permafrost regions on the QTP. The

highest warming rate was 0.71�C per decade at Tuotuohe, while the

lowest values were 0.54�C per decade at Wudaoliang and Anduo. The

warming trend was greater in the cold season of May–September

(0.83�C per decade) than in the warm season of November–March

(0.44�C per decade) (Figure 1a). Climate warming has occurred faster

in the permafrost regions than in the non-permafrost areas. Annual

precipitation also showed a significant trend (16.3 mm per decade) in

the permafrost regions during 1981–2017 (Figure 1b). Overall, the cli-

mate in most permafrost regions on the QTP is becoming warmer and

wetter.8

3 | CURRENT STATUS OF PERMAFROST
DISTRIBUTION

3.1 | Permafrost distribution and temperature

Almost all permafrost maps at the continental or regional scale are

based on statistical relationships between permafrost distribution and

air or ground surface temperature. The limit of permafrost coincides

with the 0�C isotherm of MAAT in the circum-Arctic, but with the −2

to −3�C isotherms on the QTP.9,30–32 Reliable data on the spatial dis-

tribution of permafrost temperature, thickness, and ground ice were

not acquired on the QTP until 2017 because borehole data were

available previously at only a few locations.33,34 Since 2009, we have

conducted extensive investigations and monitored the distribution

and characteristics of permafrost on the QTP,7,35,36 and have con-

structed a model for the temperature at the top of the permafrost

(TTOP model) with full consideration of vegetation, geomorphological,

and geological factors. The modeled permafrost distribution has been

clearly verified.36,37 The results indicated that the areas of permafrost

and seasonally frozen ground on the QTP are 1.06 × 106 and

1.45 × 106 km2, respectively, accounting for 40% and 56% of the

entire QTP (Figure 2).9

Using the regression model to infer mean annual ground tempera-

tures (MAGTs), the permafrost on the QTP can be classified into five

types: very stable (MAGT < −5�C), stable (−5�C < MAGT <−3�C),

substable (−3�C < MAGT < −1.5�C), transitional

(−1.5�C < MAGT < −0.5�C) and unstable (−0.5�C < MAGT < 0.5�C),

with the areas of 0.059 × 106, 0.195 × 106, 0.308 × 106, 0.224 × 106,

and 0.229 × 106 km2, respectively (Figure 2). Substable (30.4%), tran-

sitional (22.1%), and unstable permafrost (22.6%) make up the major-

ity of permafrost regions on QTP.
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3.2 | Permafrost thickness and ground ice

Permafrost thickness and ground ice content are two key factors

affecting engineering construction in cold regions. Permafrost thick-

ness is mainly influenced by MAGT and geothermal gradient.38 On

average, for every 1�C increase in MAGT, permafrost thickness

decreases by about 31 m on the QTP. The spatial distribution of per-

mafrost thickness on the QTP has been obtained using MAGT

(Figure 2a) and this inverse relationship (Figure 1d). The thickness

ranges from several meters to about 350 m. Permafrost is thicker on

the Qiangtang Plateau and the Kunlun Mountains which lie in the cen-

tral QTP. Permafrost thickness is more than 200 m near the mountain

ridges at high elevation (generally above 5,500 m a.s.l.), 60–130 m in

hilly landscapes, and less than 60 m in valley bottoms on the high

plateau.

The formation and variation of ground ice have influenced the

regional hydrological cycle,39 ecological system,40 climate system,41

topography and construction stability. Using data for dry density and

water content from 164 boreholes, the horizontal and vertical

distribution of ice content in different sedimentary types on the QTP

has been analyzed.7 The gravimetric ice content ranges from 12% to

48%, is highest in fluvioglacial sediments, then in lacustrine sediments

and in weathered residual slide rock. The ice content is relatively low

in alluvial sediments and carbonatite, clastic, pyrogenic, and metamor-

phic rocks. Ice-rich layers are consistently found near the permafrost

table on the plateau, where ALT is generally 2–3 m. The ice content

increases with depth from 3 to 10 m and remains relatively stable

below 10 m.7 Total ground ice storage on the QTP of about

12.7 × 103 km3 water-equivalent has been calculated based on the ice

content distribution, permafrost distribution, Quaternary sedimentary

type, and permafrost thickness (Figure 2b).7 Ground ice content

increases from south to north and from east to west on the QTP, and

is higher in the HohXil area and West Kunlun Mountains than in other

regions.7 The estimate is within the range obtained for ice content

along the QTH (10.9–17.4 × 103 km3 water-equivalent) by Nan

et al.37 but higher than the estimate based on the ground ice distribu-

tion in different topographic units along the highway (9.5 × 103 km3

water-equivalent).32

TABLE 1 Climate change in permafrost regions on the QTP during 1981–2017

Site

Latitude

(�N)

Longitude

(�E)
Elevation

(m)

MAAT

(�C)
Trends in MAAT (�C
per decade)

Annual

precipitation (mm)

Trends in precipitation (mm

per decade)

Wudaoliang 35.13 93.05 4,612.2 −4.82 0.54 311.6 29.71

Gaize 32.09 84.25 4,414.9 0.64 0.69 181.8 31.49

Anduo 32.21 91.06 4,800.0 −2.20 0.54 459.1 6.34

Naqu 31.29 92.04 4,507.0 −0.40 0.64 455.2 13.80

Tuotuohe 34.13 92.26 4,533.1 −3.51 0.71 301.6 21.23

Qumalai 34.08 95.47 4,231.2 −1.49 0.66 424.5 6.59

Maduo 34.55 98.13 4,272.3 −3.11 0.58 337.4 12.37

Qingshuihe 33.48 97.08 4,415.4 −4.07 0.63 526.7 −0.81

F IGURE 1 (a) Changes in MAAT
and (b) annual precipitation in
permafrost regions of the QTP during
1981–2017 (the solid lines indicate
average values, and the light-colored
areas show the mean ± SD),
(c) variation of ground temperature at
15 m depth and (d) active-layer
thicknesses along the Qinghai–Tibet
highway in the last two decades. For
all graphs, k gives the average annual
rate of change
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4 | CHANGES AND PROJECTIONS OF
PERMAFROST CONDITIONS

4.1 | Changes of permafrost temperature

At present, permafrost is warming or degrading globally due to climate

change. There are substantial regional differences in the rate of per-

mafrost warming due to differences in ground ice content, ground

temperature, and regional climate patterns. In the high Arctic continu-

ous permafrost zone, permafrost temperatures increased by

0.39 ± 0.15�C over the decade 2007–2016.42 Over the same period,

discontinuous permafrost in the Arctic regions warmed by

0.20 ± 0.10�C and mountain permafrost in the European Alps, the

Nordic countries, and central Asia (including the QTP) increased by

0.19 ± 0.05�C.42 The most substantial increase has been observed

where permafrost temperatures are lowest. At ice-rich locations with

permafrost temperatures close to 0�C, the increase has been relatively

low due to the influence of phase change in soil pore water. At Alert

on northern Ellesmere Island, Canada, where MAGT was −14�C, a

warming rate of 0.6�C per decade at 15 m depth has been recorded

since 1978.43 In the central and southern Mackenzie Valley, the

warming rates of permafrost (> −2�C) monitored at Norman Wells

and Wrigley were 0.14 and 0.09�C per decade respectively over a

similar period.43

Previous studies have indicated that the depth of zero annual

amplitude in ground temperature is generally between 3.5 and 17 m

in the permafrost regions along the QTH.44 Ground temperature at a

depth of 15 m was taken as the reference depth for MAGT to analyze

changes in 10 boreholes from 2001 to 2017 (Table 2). The MAGT of

these boreholes ranged from −2.61 to −0.34�C. Ground temperatures

increased from 2001 to 2017, indicating noticeable permafrost

warming. Higher warming rates (0.25–0.26�C per decade) were

observed at boreholes QTB02, QTB09, and QTB18, with average

MAGT of −2.19, −2.61, and −0.68�C respectively, while slower

warming occurred at QTB01, QTB03, and QTB06 (0.02–0.07�C per

decade), with average MAGT of between −0.34 and −0.61�C

F IGURE 2 (a) Predicted MAGT at a depth of
10–15 m and (b) permafrost thicknesses on the
QTP. SFG, seasonally frozen ground; UG,
unfrozen ground; NMSs, China meteorological
stations; AL, active layer; PT_bh, permafrost
thicknesses observed from boreholes; PT_TEM,
permafrost thicknesses derived by the time
domain electromagnetic method
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(Table 2). Warming rates in boreholes with MAGT lower than −0.6�C

were between 0.1 and 0.3�C per decade, and were low or even negli-

gible in boreholes with MAGT above −0.6�C (Figure 1c). The lowest

temperature change was recorded in “warm” permafrost close to 0�C

caused by the steep slope of the unfrozen water content characteris-

tic curve in this temperature range.45–47 Laboratory tests on the soil

freezing–thawing process showed that for silt, the temperature of

spontaneous nucleation for ice is at −0.55�C.48

4.2 | Changes in active-layer thickness

Due to rising air temperatures, ALT has increased in the circum-Arctic

permafrost region since the 1990s, but, as on the QTP, there is

regional variation in the rate of active-layer deepening (Figure 1d). For

example, since 2013, ALT has increased in eastern Siberia and the far

east of Russia at a rate of about 1 cm/year, with up to 4 cm/year mea-

sured at several locations such as at Isit, Sanaga, Norils'k and Suntar.49

In 2016, measurements of the Circumpolar Active Layer Monitoring

network indicated ALT at all Arctic sites to be at or near the maximum

for the past 18–21 years.

Monitoring of 10 boreholes on the QTP show that from 1981 to

2018, the active layer has thickened at an average rate of 19.5 cm per

decade and that the thickening has been accelerating recently

(Figure 1d). In the past 21 years (1998–2018), ALT increased by

28 cm per decade on average50 and MAGT at the bottom of the

active layer increased at a rate of 0.49�C per decade. Even in

2017/18, MAGT increased by nearly 0.1�C at the bottom of the

active layer.50

4.2.1 | Simulations of permafrost changes on
the QTP

Simulations of permafrost changes under different RCP scenarios51–53

indicate that the permafrost area on the QTP may decrease. The

projected decline is by 8.8–20.8% in the next 50 years and

13.4–27.7% by 2100 under the RCP 2.6 scenario. Under the RCP 8.5

scenario, the decline is simulated as 13.5–39.6% in the next 50 years

and 60–90% by 2100. These predictions were made using projections

of effects on the surface energy balance and heat conduction theory.

However, permafrost conditions are a product of particular climatic

conditions operating over time.54 Permafrost in the QTP formed over

a long period of cold paleoclimate, during which a large amount of

energy was released to the atmosphere, and a so-called “cool-energy-

pool” (CEP) developed gradually within the permafrost. Such a CEP is

an energy state characterized by low ground temperature and ground

ice in permafrost. These properties of permafrost have not been con-

sidered in the applied models.55

A numerical heat conduction model, in which ground ice distribu-

tion, ground temperature, and geothermal heat flow were considered,

was used to simulate the impact of future climate change on perma-

frost temperature in three boreholes on the QTP (XDTGT, QTB09,

QTB16; see Figure 2) under the RCP 2.6, 6.0 and 8.5 scenarios

(Table 3). The model was validated over the period 1966–2012 with

replication of ground warming and ALT at each site.56 The simulation

results indicate that ground temperature at a depth of 15 m increased

from −1.2 to −0.6�C at XDTGT, from −1.9 to −1.3�C at QTP09, and

from −1.5 to −1.0�C at QTB16 in 1966–2012. ALT increased from

1.2 to 1.5 m at XDTGT, from 2.0 to 2.2 m at QTB09, and from 2.7 to

3.2 m at QTB16. Table 3 presents the state of permafrost projected

for the three sites by 2100 under the RCP emissions scenarios. RCP

2.6 gives the smallest change from present conditions, with perma-

frost still expected at all sites. Under RCP 8.5, the change is the

greatest and substantial permafrost degradation is projected. With

RCP 6.0, the ground temperature at 15 m depth indicates the continu-

ing presence of permafrost, but at all sites thaw depth is projected to

be greater than at present. The specific temperature of the permafrost

close to 0�C demonstrates the importance of soil latent heat in the

determination of the projected presence or absence of permafrost.

The modeled results indicate that permafrost degradation does

not follow a linear trend and the response of permafrost temperature

TABLE 2 Information from boreholes along the QTH for long-term ground temperature observations

SN Longitude (�E) Latitude (�N) Elevation (m)

Warming rate

(�C per decade) Position Permafrost distribution type

QTB01 35.72 94.08 4,516 0.07 Xidatan Northern limit, island permafrost

QTB02 35.63 94.06 4,747 0.26 Kunlun Mountain Continuous permafrost

QTB03 35.52 93.78 4,580 0.03 66 Daoban Continuous permafrost

QTB06 35.49 93.68 4,526 0.02 Hoh Xil grand bridge Continuous permafrost

QTB07 35.19 93.07 4,642 0.13 Wudaoliang Continuous permafrost

QTB09 35.14 93.04 4,717 0.25 Wudaoliang Continuous permafrost

QTB15 33.10 91.90 4,936 0.23 Tanggula Mountains Continuous permafrost

QTB16 33.07 91.94 5,045 0.14 Tanggula Mountains Continuous permafrost

QTB18 31.82 91.74 4,802 0.26 Liang Daohe Southern limit, island permafrost

XDTGT 35.72 94.13 4,450 0.22 Xidatan Northern limit, island permafrost

400 ZHAO ET AL.



to climate warming is not as rapid as forecast in many published

reports.34,53,57,58 Under the RCP 8.5 scenario, the permafrost table

would deepen slowly, and permafrost would still remain at 40 m at

Wudaoliang and Tanggula by 2050, while the permafrost base would

move upwards significantly at Xidatan. The former two boreholes are

in the continuous permafrost zone with lower ground temperature

and thicker permafrost. The Xidatan site is located just at the lower

boundary of the permafrost zone on the QTP, where the ground is

warmer and permafrost is just 32 m thick. Even so, permafrost would

still exist there in 2100.

4.3 | Effects of permafrost changes on the
environment

4.3.1 | Hydrology and water resources

The permafrost regions of the QTP contain the source areas of many

major rivers. Thickening of the active layer and melting of ground ice

may affect the hydrological cycle, runoff generation, and confluence

processes in the source basins of these rivers.59 Changes in base flow

may be expected due to alterations in storage capacity and water sup-

ply in the thawed active layer.60

Permafrost does not significantly affect streamflow regimes

where the spatial extent of permafrost is less than 40%, but it strongly

affects the discharge regime in regions with higher permafrost cover-

age.61 Estimates of permafrost area and ground ice storage in the

major river basins on the QTP are presented in Table 4.7 The area

underlain by permafrost in the major river basins ranges from less

than 10% to more than 60%. There is relatively little permafrost cov-

erage in the eastern part of the QTP, and, as a result, rivers whose

headwaters rise there may be less sensitive to permafrost change than

those in the northern and western regions of the QTP. The extent of

permafrost coverage in most watersheds is less than 60%, but it is

higher than 60% in the watersheds of the Qilian Mountains and

between Kunlun and Tangula mountains (Table 4). The extent of per-

mafrost increases with elevation, so the effect of permafrost on river

runoff will be more prominent at higher elevations.

TABLE 3 Permafrost state by 2100 under different RCP scenarios

Site

Ground temperature at 15 m (�C) Depth of permafrost table (m)

RCP 2.6 RCP 6.0 RCP 8.5 RCP 2.6 RCP 6.0 RCP 8.5

XDTGT −0.2 −0.2 0 1.8 6.5 15

QTB09 −0.4 −0.3 0 2.95 7.5 15

QTB16 −0.3 −0.3 0.52 3.6 10 18

TABLE 4 Permafrost area and ground ice storage in the major river basins on the QTP and surrounding areas

River basin
Basin area
(km2)

Permafrost area
(km2)

Ground ice
(km3)

Permafrost coverage
(%)

Ice storage per permafrost area
(kg/m2)

Qiantang plateau inflow

basin

662,953 415,193 5,594 63 13,474

Qaidam inflow basin 271,017 83,570 1,067 31 12,767

Yangtze River 214,048 115,791 1,014 54 8,757

Cheerchen River 70,472 39,151 689 56 17,590

Yellow River 194,412 62,424 578 32 9,263

Hetian River 38,221 25,410 482 66 18,979

Yarlung Zangbo River 186,290 53,751 433 29 8,050

Nujiang River 108,802 42,145 375 39 8,903

Kyria River 25,595 17,515 318 68 18,184

Qinghai lake inflow basin 40,262 17,954 241 45 13,400

Shule River 31,726 20,066 233 63 11,628

Yarkant River 24,262 13,228 205 55 15,471

Indus River 57,687 21,756 199 38 9,149

Lancang River 80,452 21,945 188 27 8,582

Yalong River 102,554 17,855 149 17 8,352

Tibetan rivers in southern

Tibet

98,071 22,545 143 23 6,357

Heihe River 24,305 13,776 127 57 9,226

Dadu River 61,809 4,430 39 7 8,791

Shiyang River 4,466 2,355 25 53 10,540
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In addition, using stable isotopes and a multi-source hydrological

model, soil moisture in the active layer has been determined to be the

main source for replenishing the ice layer in the upper permafrost.50

Analysis of hydrogen and oxygen isotopes from river water in the

Fenghuoshan region of the QTP has shown that the change of soil

freeze–thaw depth has an important effect on runoff in the perma-

frost region.62 Based on the distribution of ground ice and the current

thickening rate of the active layer, on average about 80 km3 of under-

ground ice in the permafrost region of the QTP is expected to melt

each decade in the near future and be introduced to the regional

water balance. Deepening of the active layer will intensify the infiltra-

tion of soil moisture and reduce the surface soil moisture, leading to

vegetation degradation and changes in the interception and distribu-

tion of rainfall.63 In addition, a reduction of root systems and fine soil

particles from vegetation decomposition will reduce soil water reten-

tion. In general, degradation of permafrost will reduce the ability of

grassland ecosystems on the QTP to regulate runoff. Under climate

warming, melting of ground ice may release a certain amount of water

that then participates in the regional water cycle. Some studies show

that melting of ground ice together with runoff yield and concentra-

tion may be one of the causes of the increase in lake water levels in

most basins in the hinterland of the QTP, accounting for 12% of the

lake volume increase.64

Observations at the Hoh Xil site (QT01) from 2004 to 2017 show

that ALT increased from 160 to 176 cm. As permafrost thawed, melt-

ing of ground ice released a large amount of liquid water, resulting in

an increase in water content at the bottom of the active layer. Degra-

dation of permafrost has led to more surface water infiltration into

groundwater in the basin, resulting in an increase in groundwater stor-

age in the basin65 and an increase in winter runoff.66,67 Studies in high

latitudes show that the melting of ground ice, deepening of the active

layer, and the extension of the melting period may lead to a significant

increase in winter base flow and warm season runoff.68,69 In discon-

tinuous frozen soil regions, the melting of ground ice significantly

increases the river base flow in winter, and the increase in area of

unfrozen soil reduces the seasonal hydrograph peak.70,71

4.3.2 | Impact of permafrost changes on
ecosystems

Permafrost degradation may also alter soil nutrient status. Statistical

associations between nutrient availability and permafrost dynamics

have been investigated in theTibetan grassland,72 where topsoil avail-

able N increased from the 1980s to the 2010s by 45 and 12% for

regions with permafrost and seasonally frozen ground, respectively.

Available P in topsoil increased by 25% for permafrost regions, but

decreased by 19% in seasonally frozen ground. In contrast, available K

in topsoil decreased by 16 and 27% at permafrost and seasonally fro-

zen sites, respectively.72 These results suggest that if climate warming

continues on the QTP, permafrost degradation may increase soil N

availability, leading to shifts in nutrient limitation for Tibetan

ecosystems.

Changes to thermal and hydrologic processes in the active layer

may affect alpine ecosystems. Plant above-ground biomass has been

negatively associated with ALT on the QTP, suggesting that the active

layer can directly affect plant growth through water supply, as perma-

frost degradation may lead to a decrease in plant biomass when pro-

cipitation does not change significantly.63

Laboratory experiments indicate that climate warming not only

promotes plant growth during growing seasons, but also increases

ecosystem carbon flux during the rest of the year on the QTP.

Research suggests that enhanced plant biomass in summer may not

lead to an increased ecosystem carbon sink.73 Ecosystem carbon flux

on the QTP is higher in non-permafrost regions than in areas with

permafrost,74 but accumulation of soil active carbon fractions shows

the opposite.75 These results reveal that permafrost degradation

could accelerate the decomposition of soil carbon, so that, potentially,

the soil organic carbon pool in the Tibetan permafrost regions may

decrease by approximately 3% by 2050.36 However, the effect of per-

mafrost degradation on soil carbon remains uncertain (Figure 3).

5 | CONCLUSION

The QTP has the largest high-altitude permafrost zone in the middle

and low latitudes on Earth. Permafrost underlies approximately

1.06 × 106 km2 or 40% of the total area of the QTP. The majority of

the permafrost on the QTP is of the substable (30.4%), transitional

(22%), and unstable (23%) types. Since the 1950s, climate on the QTP

has become warmer and wetter, with the warming rate in the perma-

frost regions being higher than in the non-permafrost regions. For

every 1�C increase in MAGT, the permafrost thickness is estimated to

decrease by 31 m. Ground ice storage in the permafrost region on the

QTP is 12.7 × 103 km3 water-equivalent and is higher in the northern

and western QTP than in the eastern and southern part. The tempera-

ture of permafrost has risen at a rate of 0.02–0.26�C per decade. The

warming rate is relatively low in “warm” permafrost regions because

melting of ground ice absorbs large quantities of heat and the perma-

frost temperatures have only increased slightly or have remained con-

stant. The response of permafrost to climate warming is a slow and

lagged process. Current models of future permafrost degradation do

not consider the historical energy accumulation in permafrost and the

impact of ground ice buried 1 m or further below the ground surface.

As a result of permafrost degradation, permafrost plays a key role in

the changing water cycle and river runoff on the QTP, but the amount

and process by which melting of ground ice stored in permafrost con-

tributes to surface runoff remains unclear.
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