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Abstract:

Spatial heterogeneity of soil has great impacts on dynamic processes of the hydrological systems. However, it is challenging and
expensive to obtain spatial distribution of soil hydraulic properties, which often requires extensive soil sampling and
observations and intensive laboratory analyses, especially in high elevation, hard to access mountainous areas. This study
evaluates the impacts of soil heterogeneity on hydrological process in a high elevation, topographically complex watershed in
Northwest China. Two approaches were used to derive the spatial heterogeneity of soil properties in the study watershed: (1) the
spatial clustering method, Full-Order-CLK was used to determine five soil heterogeneous clusters (configurations 97, 80, 60, 40
and 20) through large number of soil sampling and in sifu observations, and (2) the average values of soil hydraulic properties for
each soil type were derived from the coarse provincial soil data sets (Gansu Soil Handbook at 1: 1000 000 scale). Subsequently,
Soil and Water Assessment Tool model was used to quantify the impact of the spatial heterogeneity of soil hydraulic properties
on hydrological process in the study watershed. Results show the simulations by Soil and Water Assessment Tool with the
spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil
heterogeneity and had more accurate performance than the model using the average soil property values for each soil type
derived from the coarse soil data sets. Thus, incorporating detailed field sampling, soil heterogeneity data greatly improve

performance in hydrological modelling. Copyright © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Soil hydraulic properties directly influence the proportion
of precipitation retained in subsurface storage and water
transmission rates to stream networks (Zimmermann
et al., 2006; Tetzlaff et al., 2007; Price et al., 2010).
These properties also affect energy balance at the soil
surface by influencing partitioning of net radiation into
latent heat, sensible heat and soil heat flux (Lewan and
Jansson, 1996; Chaplot, 2005; Romanowicz et al., 2005;
Bormann, 2008). Field experiments have revealed that
soil properties can show considerable spatial heterogene-
ity (Merz and Plate, 1997; Ye et al., 2011), and such
spatial heterogeneity contributes to all aspects of the
hydrological cycle (Tague, 2005). Thus, it is essential to
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take into account spatial heterogeneity of soil hydraulic
properties in modelling hydrological processes, such as
runoff generation, evapotranspiration, infiltration and
groundwater recharge.

Numerous studies have been conducted to evaluate the
effects of the spatial variability of soil hydraulic
properties on hydrological process and corresponding
responses. Lewan and Jansson (1996) investigated the
effects of spatial variability of soil hydraulic properties on
evaporation at the field scale in southwestern Sweden. At
the watershed scale, different models have been used to
simulate the impacts of spatial variability of soil hydraulic
properties on the hydrological process (e.g. the Institute
of Hydrological Distributed Model or IHDM, Calver,
1988; Soil and Water Assessment Tool or SWAT,
Boluwade and Madramootoo, 2013; and Block-wise use
of TOPMODEL together with the Muskingum-Cunge or
BTOPMC, Wang et al., 2010). Loague and Kyriakidis
(1997) found a high relevance of the spatial variability of
saturated hydraulic conductivity for the description of
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infiltration processes in R-5 catchment near Chickasha,
Oklahoma, USA. Bloschl et al. (1993) and Grayson et al.
(1995) used the process-oriented rainfall runoff model
Testing hypotheses, analyzing field data and exploring
scale issue model (THALES) to investigate the effects of
randomly and deterministically assigned spatially hetero-
geneous distribution of soil physical characteristics on
hill-slope and catchment runoff, respectively, in Australia.
Zhu and Mackay (2001) investigated the effects of soil
thickness and saturated hydraulic conductivity on hydro-
ecological modelling over a mesoscale watershed in USA.
A number of researchers (Woolhiser et al., 1996; Merz
and Plate, 1997; Sciuto and Diekkriiger, 2010) studied the
effects of spatial variability of the soil physical charac-
teristics on the spatial patterns of runoff production and
soil moisture content. All these studies mainly focused on
the following two aspects: (1) the effects of the resolution
of soil data on hydrological process, and (2) the effects of
spatial variability of soil hydraulic properties. In these
studies, the spatial information of soil physical properties
is typically derived from conventional polygon-based soil
maps, with a scale likely to be substantially lower than
that of other data sets used, to feed distributed
hydrological models (Quinn et al., 2005). That is, they
assumed that soil physical properties were spatially
homogeneous and used the average value to represent
each soil variable for each type of soil and neglected the
soil spatial heterogeneity within each soil type. Boluwade
and Madramootoo (2013) and Li et al. (2013) reported
that to account for spatial heterogeneity in soil properties,
actual soil values for each soil unit, instead of averages,
should be used.

Soil and Water Assessment Tool (SWAT) (Arnold
et al., 1998) is a spatially explicit, physically based long-
term hydrological simulation model. It computes the
characteristics of hydrological pathway on three spatial
levels (Arnold et al., 1998; Gassman et al., 2007; Neitsch
et al., 2009): watershed, subbasin and hydrologic
response units (HRUs). The HRUs represent the unique
combinations of soil, topography and land cover within
each subbasin and are considered to be hydrologically
homogeneous. As a virtue unit, HRUs provide an
alternative for parameterizing SWAT within each subba-
sin; however, HRUs do not possess spatial orientation
within each subbasin, and mean values of soil hydraulic
properties were used for all the HRUs within each
subbasin. Thus, the spatial variations of these properties
are not properly represented in the SWAT model
(Boluwade and Madramootoo, 2013).

To better understand the impacts of the spatial heteroge-
neity of the soil hydraulic properties on hydrological process
at the watershed scale, the present study evaluates the effects
of the spatial heterogeneity of soil properties derived from
two approaches on watershed modelling. The first approach

Copyright © 2015 John Wiley & Sons, Ltd.

3319

determines spatial heterogeneity of soil properties through
extensive soil samplings and in situ observations. The soil
sample points were aggregated and divided into desired
heterogeneous areas (or clusters) by implementing the
spatial cluster method. The second approach defines the
heterogeneity of soil properties by using the averages of soil
hydraulic properties for each soil type from the coarse
provincial soil data sets (Gansu Soil Handbook at
1:1000000 scale). Subsequently, the SWAT model was
used to simulate the impacts of the two soil hydraulic data
sets by the two approaches on hydrological processes in a
high elevation and cold mountainous watershed in North-
west China, respectively.

MATERIALS AND METHODS

Study area

The Heihe River watershed, lying between 98° and
101°30’E and 38° and 42°N, is a typical inland river (or
terminal lake) basin with a drainage area of approxi-
mately 130000km? in the arid region of Northwest
China (Qi and Luo, 2006). From the headwaters in the
south to the lower reach in the north, the Heihe River
watershed can be physically divided into the Qilian
Mountain, the Hexi Corridor and the Alashan Highland
(He et al., 2009). The upper reach, with a drainage area of
10009 km?, in the Qilian Mountain is selected for this
study (Figure 1). It is the main runoff generation area for
the whole basin. Its elevation varies greatly from 1674 to
5584 m (Li et al., 2009). Annual precipitation ranges from
over 200mm in areas above 2600 m elevation to 700 mm
in the summit (Li er al., 2009). Precipitation increases
15.5-16.4mm for every 100m increase in elevation. In
spring, the precipitation is relatively low, accounting for
only 1.5% of total annual precipitation in March and 5.1%
in April. The annual average runoff is 1.6.05%10° m’ with
weak intra-annual variability (Zhao and Zhang, 2005; He
et al., 2009). The dominant land cover types within the
watershed are grassland and woodland (Li et al., 2009).
The main soil types are alpine steppe soil, chestnut soil
and alpine frost desert soil (Li et al., 2009), and the main
textures of the soils are silt, silt loam and sandy loam.

Spatial heterogeneity in soil properties

As previously mentioned, the present study evaluates
the effects of the spatial heterogeneity of soil properties
derived from two approaches on watershed modelling.
The first approach determines spatial heterogeneity of soil
properties through extensive soil samplings and in situ
observations. The soil sample points were aggregated and
divided into desired heterogeneous areas (or clusters) by
implementing the spatial cluster method, regionalization

Hydrol. Process. 29, 3318-3327 (2015)
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Figure 1. Boundary of the Heihe River watershed and the study area

with dynamically constrained agglomerative clustering
and partitioning (REDCAP) (Guo, 2008; Benassi and
Ferrara, 2010). A full-order complete-linkage clustering
(CLK) technique (Guo, 2008) was used to derive
heterogeneously clustered areas. The second approach
defines the heterogeneity of soil properties by using the
averages of soil hydraulic properties for each soil type
from the coarse provincial soil data sets (Gansu Soil
Handbook at 1:1000000 scale). The main difference
between the two soil databases is that the former soil
database contains heterogeneous distribution of soil
hydraulic properties in each soil type while the latter
soil database only uses the average values to represent
the soil hydraulic properties of each soil type and lacks
the information on the spatial variation of such soil
variables within each soil type.

As use of actual soil values for each soil unit is better
than using the averages in accounting for spatial
heterogeneity in soil properties (Boluwade and
Madramootoo, 2013; Li et al., 2013), this study represents
variations of soil properties by using the clustering analysis
of the soil sampling data (the first approach).

We first divided the study area into several homoge-
neous zones as follows:

1. Convert the land use/land cover (LULC), soil type
and elevation digital elevation model (DEM) data
sets of the study area to ArcGIS (Environmental
Systems Research Institute, 2012) shapefile format;

2. Overlay the aforementioned data sets to define land
cover-soil-DEM classes (polygons);

3. Aggregate those similar LULC-soil-DEM classes to
produce relatively larger, homogeneous classes

Copyright © 2015 John Wiley & Sons, Ltd.

(ESRI, 2012). There are 27 LULC-soil-DEM classes
(Figure 2). The details of the classes can be found in
Table I;

4. Select soil sampling sites within each of those
classes using a stratified random soil sampling
design (Figure 2);

5. Derive soil heterogeneous zones or clusters by soil
sampling points using the Thiessen polygon tool in
ArcGIS (Figure 3) as these Thiessen polygons are
considered heterogeneous (Boots, 1986; ESRI,
2012).

In defining the desired heterogeneous zones, we used
REDCAP technique (Guo, 2008; Benassi and Ferrara,
2010; Boluwade and Madramootoo, 2013). Regionali-
zation is to divide a large set of spatial objects into a
number of spatially contiguous zones or clusters based
on a predefined homogeneity (or heterogeneity)
objective function (Guo, 2008). REDCAP is a spatial
clustering method that uses spatial data mining
techniques to define spatial clustering or regions. In
REDCAP, there are six regionalization methods: First-
order single-linkage clustering (SLK), First-order
average-linkage clustering (ALK), First-order complete-
linkage clustering (CLK), Full-order single-linkage
clustering (SLK), Full-order average-linkage clustering
(ALK) and Full-order complete-linkage clustering
(CLK). The Full-order-CLK method produces
significantly better results than other methods according
to Guo (2008). Therefore, this research chose Full-order-
CLK method to derive heterogeneously clustered
zones/regions. The method consists of two steps: (1)
clustering data with contiguity constraints to produce a

Hydrol. Process. 29, 3318-3327 (2015)
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Figure 2. Land use/land cover-soil-digital elevation model proximal polygons and sample points in the study area

spatially contiguous tree (hierarchy), and (2) partitioning The complete linkage clustering is carried out by
the tree to generate regions or zones while optimizing a computing the dissimilarity between the furthest pair of
predefined homogeneity (or heterogeneity) objective data points as the distance between two clusters (Guo,
function (Guo, 2008; Benassi and Ferrara, 2010). 2008):

Table I. Land use/land cover-soil-digital elevation model combination

Number Land use Soil type Elevation band (m)
1 Middle degree overlay grassland Light chestnut soil 2000-2500
2 Middle degree overlay grassland Sliming grey desert soil 2000-2500
3 Middle degree overlay grassland Typical chestnut soil 2500-3000
4 Middle degree overlay grassland Light chestnut soil 2500-3000
5 Middle degree overlay grassland Light chestnut soil 3000-3500
6 Middle degree overlay grassland Saturation alpine steppe soil 3000-3500
7 Middle degree overlay grassland Saturation alpine steppe soil 3500—4000
8 Middle degree overlay grassland Calcareous alpine steppe soil 4000-4500
9 Forest land Typical chestnut soil 2500-3000
10 Forest land Typical grey cinnamon soil 2500-3000
11 Forest land Peat subalpine steppe soil 2500-3000
12 Forest land Light chestnut soil 2500-3000
13 Forest land Peat subalpine steppe soil 3000-3500
14 Forest land Saturation alpine steppe soil 3000-3500
15 Forest land Peat subalpine steppe soil 3500-4000
16 Rock and gravel land Typical chestnut soil 2500-3000
17 Rock and gravel land Calcareous alpine steppe soil 2500-3000
18 Rock and gravel land Saturation alpine steppe soil 3000-3500
19 Rock and gravel land Typical alpine steppe soil 3500—-4000
20 Rock and gravel land Typical alpine frost desert soil 4000-4500
21 Rock and gravel land Saturation alpine steppe soil 4000-4500
22 High degree overlay grassland Typical chestnut soil 2500-3000
23 High degree overlay grassland Light chestnut soil 2500-3000
24 High degree overlay grassland Typical chestnut soil 3000-3500
25 High degree overlay grassland Peat subalpine steppe soil 3000-3500
26 High degree overlay grassland Saturation alpine steppe soil 3000-3500
27 High degree overlay grassland Saturation alpine steppe soil 3500-4000

Copyright © 2015 John Wiley & Sons, Ltd.
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Figure 3. The result of the spatial division of the study area into proximal
polygons

dCLK (L, M) = MAaXyel veM (duv) (1)

Where L and M are two clusters, u€L and veM are
data points and d,,, is the dissimilarity between u and v
(Guo, 2008; Benassi and Ferrara, 2010).

The Full-order CLK considers all edges in the
clustering process. It updates the contiguity matrix after
each merge and produces different trees that define
different searches for the partitioning of the clusters.
Subsequently, we obtain a number of subtrees, each of
them corresponding to a spatially contiguous region
(Guo, 2008; Benassi and Ferrara, 2010). The process
iteratively partitions a spatially contiguous tree into K
regions by cutting a subtree (i.e. a region or a macro
region) that produces the largest homogeneity gain (i.e.
heterogeneity reduction) (Guo, 2008; Benassi and
Ferrara, 2010). This process continues until the overall
heterogeneity of the regionalization is minimized.

The heterogeneity is measured by the sum of square
deviation (SSD), which is expressed as

LK) = B34 Z o o = )’

@

Where n, is the number of objects in region K, x,, is the
value for the Ath attribute of the gth object, y,, is the mean
value of the hth attribute for all objects, K is a region, L
(K) is the heterogeneity and S is the number of attributes
(for mathematical details, refer to Guo, 2008; Benassi and
Ferrara, 2010).

Using the aforementioned methods, we divided the
heterogeneous zones into five heterogeneous clusters
(regions): C97, C80, C60, C40 and C20; the numbers 97,
80, 60, 40 and 20 represent the number of heterogeneous
soil zones; the study watershed is divided into based on
the predefined proximal polygons derived from the soil

Copyright © 2015 John Wiley & Sons, Ltd.
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sampling data, respectively. The soil map (1: 1000000
scale) and related database from ‘Environmental &
Ecological Science Data Center for West China, National
Natural Science Foundation of China’ (http://westdc.
westgis.ac.cn) were used as the sixth clustering ‘C0O’,
which represents each soil type with the average soil
hydraulic value in the study watershed (the second
approach).

Field measurements and laboratory analysis of soil
properties

Soil sampling sites were determined using a stratified
random soil sampling in the study area. Ninety-seven soil
samples (at depths 0-0.10m, 0.10-0.30m and 0.30-
0.50m) were collected to measure the following soil
properties: hydraulic conductivity (SOL_K) in mmh~!,
soil bulk density (SOL_BD) in g/cm?®, available water
content (SOL_AWC) in mm/mm and particle size
distribution (SOL_CLAY, SOL_SILT and SOL_SAND)
in %.

Hydraulic conductivity is measured by the constant
head permeameter method (Amoozegar, 1989).

Soil bulk density is determined by the volumetric
weight measurement method. Soil samples are first
weighed in the field and then weighed again after oven
dried for 24 h at 105 °C. The bulk density is subsequently
calculated based on the dry soil weight and volume of the
container (Neitsch et al., 2009).

Available water content is calculated as water content
difference between field capacity and permanent wilting
point of soil at any given depth. The field capacity () is
defined as the moisture content of the soil when downward
movement of water has virtually ceased. The permanent
wilting point (y,,,,) is considered as the moisture content
of the soil when the plants are unable to recover from water
deficits (Klute, 1986; Neitsch et al., 2009).

Particle size distribution of the samples is analysed
using a laser particle analyser (Malven Instruments,
Inc., Mastersizer 2000), with a measuring range of
0.02-2000 pm. It is used to determine the soil texture
of the samples.

SWAT model setup

As a physically based hydrological model, SWAT has
been successfully used in many watersheds worldwide
(Arnold et al., 1998; Li et al., 2009). Inputs for SWAT
model include databases of topography, soil, land use,
hydrology and meteorology over the study watershed.
Topographic data (DEM) are used to divide the watershed
into sub-basins, each of which having assigned informa-
tion on climate, groundwater, main channel, stream and
outlet. Within each subbasin, SWAT then identifies
HRUs with unique land cover, soil types and slope

Hydrol. Process. 29, 3318-3327 (2015)
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information (Arnold et al., 1998; Li et al., 2009). The
details of the model are described in Arnold et al. (1998)
and Neitsch et al. (2009).

Soil and Water Assessment Tool 2009 with ArcSWAT
interface is used in this research. The following data sets
for the study area are used for the model: (1) DEM with a
spatial resolution of 30m, (2) land use map of 2000 at a
scale of 1:100000, (3) soil map at a scale of 1:1000 000,
(4) climatic data including daily maximum and minimum
air temperature and daily precipitation at nine stations (all
climate data were obtained as daily averages), and (5) the
flow data at the outlet of the study watershed (Yingluoxia
Hydrological Station) are used to evaluate the SWAT
model performance. The aforementioned data sets are all
provided by ‘Environmental & Ecological Science Data
Center for West China, National Natural Science
Foundation of China’ (http://westdc.westgis.ac.cn).

Finally, six SWAT scenarios using the different soil
clusters are set up: (1) CO, it uses the average values of
soil properties for each soil type, (2) C97, which divides
the study watershed into 97 heterogeneous soil
clusters/regions based on the soil sampling data, (3)
C80, it divides the study watershed into 80 heterogeneous
soil regions based on the soil sampling data, (4) C60,
which divides the study watershed into 60 heterogeneous
soil regions based on the soil sampling data, (5) C40, it is
similar to C60 but divides the study watershed into 40
heterogeneous regions, and (6) C20, which divides the
watershed into 20 heterogeneous regions.

The SWAT model was run from 2005 to 2009 at
monthly interval. Model performance in fitting the
observations is measured using three objective functions
according to Moriasi et al. (2007): Nash—Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970), percent bias
(PBIAS) and ratio of the root mean square error to the
standard deviation of measured data (RSR). The formulas
for NSE, PBIAS and RSR are as follows:

n obs sim 2
NSE =1— Zf‘éQ" —~ Qib )>2 3)
Yoo -0 '
X (07 — 0™)«100
PBIAS = 4
> (07 @
n obs “vim 2
esp . VZl (0" -0 s

Yz (e - o)

Where Ql.”bs and Q™ are the ohsgrved and simulated
values on day (or month) i and 0" and Q™" are the
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averages of the observed and simulated data during the
simulation period. NSE is used to measure ‘goodness of
fit’, the value 1.0 stands for a perfect match and zero
value means that the model’s prediction is no better than
using the mean of observed values. PBIAS is used to
measure the average tendency of the simulated data to be
larger or smaller than the observed data, and expressed as
a percentage, with —10% to +10% representing a very
good performance rating, and —25% to +25%
representing an unsatisfactory performance rating. RSR
is calculated as the ratio of the RMSE (root mean square
error) and the standard deviation of measured data, with
the optimal value as 0. The lower RSR, the lower the
RMSE and the better the model simulation performance
(Nash and Sutcliffe, 1970; Moriasi et al., 2007).

RESULTS AND DISCUSSION

Soil clustering analysis

Figure 3 shows the result of the spatial division of the
study area into 97 proximal polygons using the
geographic information system technique; it is the only
input into REDCAP. These proximal polygons were
clustered into different numbers of heterogeneous zones
by REDCAP Full-Order-CLK method. The result can be
seen in Figure 4, the numbers 97, 80, 60, 40 and 20
represent the number of soil regions or classes in the
five soil configurations, respectively, and each colour
represents a different soil region or class. These raster
maps are the inputs into SWAT. Within-region hetero-
geneity of each of the regions is shown in Table II, and
the SSD measure of within-region heterogeneity
indicated that the lowest SSD value was found for
C97, the configuration with the largest number of
regions, and the highest SSD value was found for
C20. That is, the more regions, the more homogeneous
each region is. These soil maps with different number of
regions are the inputs to SWAT to quantify the impact
of soil heterogeneities on simulation of the watershed
hydrology.

Impacts of the spatial heterogeneities of soil hydraulic
properties on hydrological process

Impacts on HRU

The HRU is a uniform area set up in SWAT based on
the combination of land use, soil type and topographic
characteristics for hydraulic and hydrological computa-
tion and routing purposes. The number of HRUs varies
with the different soil configurations. As shown in
Figure 5, larger numbers of HRUs are produced with
the higher number of soil configurations, e.g. C97 and

Hydrol. Process. 29, 3318-3327 (2015)
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Figure 4. Different configurations of the heterogeneous zones in the study watershed by regionalization with dynamically constrained agglomerative
clustering and partitioning (each colour represents a specific soil zone)

Table II. Sum of square deviation value across each configuration

Configurations Sum of square deviation
C20 1.17

C40 0.30

C60 0.06

C80 0.01

c97 —2.78E-15

C80 for more classes or regions in these soils lead to
greater HRUs (Gassman et al., 2007; Neitsch et al., 2009;
Boluwade and Madramootoo, 2013). There are more
HRUs in CO (reference) than those in C20 because the
soil classes in CO are greater than those in C20 (20 soil
classes or regions).

Impacts on runoff

e Before calibration

Copyright © 2015 John Wiley & Sons, Ltd.
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Figure 5. Hydrologic response units (HRUs) across different soil
configurations

Soil and Water Assessment Tool outputs were
compared among the six soil configurations before
calibration. Comparison using uncalibrated models is
useful to evaluate the differences in model predictions
because calibration masks the differences that may occur

Hydrol. Process. 29, 3318-3327 (2015)
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Figure 6. Comparison of monthly runoff across six different soil configurations

as a result of the soil data sets (Kumar and Merwade,
2009). In addition, the uncalibrated model results can
show how good each configuration predicts runoff before
calibration, which would indicate the effort required for
calibration when using each configuration. Figure 6
shows the graphic comparisons between the model
simulation and observation of monthly runoff at the
outlet of the study area — Yingluoxia Hydrological Station
from 2005 to 2009. No significant differences can be seen
for configurations C97, C80, C60, C40 and C20. This
could be due to the Soil Conservation Service Curve
Number method implemented in the SWAT for
simulating surface runoff. The SWAT classifies soils
into four hydrological groups based on infiltration
characteristics of the soils. The U.S. Natural Resources
Conservation Service Soil Survey (1996) defines a
hydrological group as a group of soils having similar
runoff potential under similar storm and cover condi-
tions and assigns a Curve Number value based on soil
permeability of the group (Mishra and Singh, 2003).
These Curve Number values are quite general, cover a
range of soil types, and often mask out soils that have
notable differences in physical characteristics (Zhu and
Mackay, 2001; Neitsch et al., 2009; Boluwade and
Madramootoo, 2013).

Among the six soil configurations, CO is obviously
different from other configurations (Figure 6) because soil
properties in CO were obtained from the average values of
Gansu Soil Handbook and calculated in SPAW (Soil
texture triangle hydraulic properties calculator) software
(United States Department of Agriculture). Since the
Chinese soil particle size distribution standard is different
from the American soil particle size distribution scheme
used in the SWAT model, the Chinese soil particle size
distribution standard was converted to the corresponding
American soil classification scheme. After the conversion,
relevant soil hydrological properties were calculated in

Copyright © 2015 John Wiley & Sons, Ltd.

SPAW software. This process may also contribute errors to
hydrological modelling.

For all other five soil configurations (C97, C80, C60,
C40 and C20), the soil properties were obtained from
field sampling, that is, actual values of soil hydraulic
properties were used in each of the soil clusters in all the
five configurations.

The NSE values for the simulation of surface runoff
were 0.69, 0.68, 0.67, 0.69, 0.71 and 0.46; the PBIAS
values were 24.46%, 24.23%, 24.28%, 24.45%, 24.03%
and —42.37%, and the RSR values are 0.56, 0.56, 0.57,
0.56, 0.54 and 0.73 for the C97, C80, C60, C40, C20 and
CO0, respectively, for all the six soil configurations
(Table III). The performances of C97, C80, C60, C40
and C20 configurations were much better than that of the
control configuration (CO) by all three indices even for an
uncalibrated SWAT model; we just needed to adjust few
parameters to get better model performance.

¢ With calibration

The runoff simulations for the uncalibrated models
show that the five SWAT configurations using the field
surveyed soil data simulated runoff well even before the
calibration. However, calibration generally improves the
reliability of the model simulations. Before the model

Table III. Performance assessment of the six Soil and Water

Assessment Tool configurations using Nash—Sutcliffe efficiency

(NSE), percent bias (PBIAS) and ratio of the root mean square

error to the standard deviation of measured data (RSR)before
model calibration

C97 C80 C60 C40 C20 Co
NSE 069 0.68 067 0.68 0.71 0.46
PBIAS (%) 2446 2423 2428 2445 2503 —4237
RSR 056 056 057 056 054 0.73

Hydrol. Process. 29, 3318-3327 (2015)
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Figure 7. Calibrated monthly runoff across different soil configurations

Table IV. Performance assessment of the six Soil and Water
Assessment Tool configurations using Nash—Sutcliffe efficiency
(NSE), percent bias (PBIAS) and ratio of the root mean square error
to the standard deviation of measured data (RSR) with model

calibration
C97 C80 C60 C40 C20 CO0
NSE 0.92 0.92 0.92 0.92 0.93 0.82
PBIAS (%) 4.07 4.51 7.52 7.94 9.19 12.70
RSR 0.28 0.28 0.28 0.28 0.27 0.43

calibration, a sensitivity analysis was conducted to
identify which parameters were most sensitive to the
model performance. The result shows that CN2 (Soil
Conservation Service runoff curve number), CH_K2
(effective hydraulic conductivity in main channel,
GW_DELAY (groundwater delay (days)), CH_N2 (Man-
ning’s ‘n’ value for the main channel), ALPHA_BF (base
flow alpha factor (days)) and SURLAG (Surface runoff
lag coefficient) were the most sensitive parameters. We
calibrated these six parameters by using flow data from
the Yingluoxia Hydrological Station. All the six soil
configurations show better performance after the calibra-
tion, especially the soil configurations (C97, C80, C60,
C40 and C20) with the field surveyed soil data (Figure 7
and Table IV). NSE values of these configurations are all
over 0.92, PBIAS values are all below 10% and the RSR
values are all below 0.30. However, for C0O, which uses
the average values for the same soil types, the NSE value
is 0.82, the PBIAS value is 12.70 and the RSR value is
0.43 (Table IV). This indicates that the soil input obtained
from the field sampling is a better representation of the
soil properties of the study area than that of the average

Copyright © 2015 John Wiley & Sons, Ltd.

soil property values derived from the 1:1000000 scale
soil map from the Gansu Soil Handbook.

CONCLUSIONS

This study used SWAT to quantify the impact of spatial
heterogeneity of soil hydraulic properties on simulating
hydrological process in a high elevation and cold
mountainous watershed in Northwest China. Two impor-
tant findings are the following:

First, the Full-Order-CLK method was used to derive
heterogeneously clustered regions based on the field soil
survey. The result shows that the greater the number of
soil regions clustered, the lesser the within-region
heterogeneity is.

Second, the five soil configurations based on the field
soil sampling were used in the SWAT model to simulate
monthly runoff. The result indicates the soil input
obtained from the field sampling has better representation
of the soil heterogeneity and thus produced more accurate
simulation results than that of the model using the average
soil property values derived for each soil type from the
coarse national or provincial soil maps. Thus, obtaining
more accurate soil data is critical to improve hydrological
modelling at the watershed scale for hydrological research
and water resources management.
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