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We have produced the first 30 m resolution global land-cover maps using Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. We have
classified over 6600 scenes of Landsat TM data after 2006, and over 2300 scenes
of Landsat TM and ETM+ data before 2006, all selected from the green season.
These images cover most of the world’s land surface except Antarctica and Greenland.
Most of these images came from the United States Geological Survey in level L1T
(orthorectified). Four classifiers that were freely available were employed, including
the conventional maximum likelihood classifier (MLC), J4.8 decision tree classifier,
Random Forest (RF) classifier and support vector machine (SVM) classifier. A total of
91,433 training samples were collected by traversing each scene and finding the most
representative and homogeneous samples. A total of 38,664 test samples were collected
at preset, fixed locations based on a globally systematic unaligned sampling strategy.
Two software tools, Global Analyst and Global Mapper developed by extending the
functionality of Google Earth, were used in developing the training and test sample
databases by referencing the Moderate Resolution Imaging Spectroradiometer enhanced
vegetation index (MODIS EVI) time series for 2010 and high resolution images from
Google Earth. A unique land-cover classification system was developed that can be
crosswalked to the existing United Nations Food and Agriculture Organization (FAO)

*Corresponding author. Email: penggong@berkeley.edu

ISSN 0143-1161 print/ISSN 1366-5901 online
© 2013 Taylor & Francis
http://dx.doi.org/10.1080/01431161.2012.748992
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 

mailto:penggong@berkeley.edu


2608 P. Gong et al.

land-cover classification system as well as the International Geosphere-Biosphere
Programme (IGBP) system. Using the four classification algorithms, we obtained the
initial set of global land-cover maps. The SVM produced the highest overall classi-
fication accuracy (OCA) of 64.9% assessed with our test samples, with RF (59.8%),
J4.8 (57.9%), and MLC (53.9%) ranked from the second to the fourth. We also esti-
mated the OCAs using a subset of our test samples (8629) each of which represented
a homogeneous area greater than 500 m × 500 m. Using this subset, we found the
OCA for the SVM to be 71.5%. As a consistent source for estimating the coverage of
global land-cover types in the world, estimation from the test samples shows that only
6.90% of the world is planted for agricultural production. The total area of cropland
is 11.51% if unplanted croplands are included. The forests, grasslands, and shrublands
cover 28.35%, 13.37%, and 11.49% of the world, respectively. The impervious surface
covers only 0.66% of the world. Inland waterbodies, barren lands, and snow and ice
cover 3.56%, 16.51%, and 12.81% of the world, respectively.

1. Introduction

Global land-cover data are key sources of information for understanding the complex inter-
actions between human activities and global change (Running 2008). Land-cover data are
some of the most important variables in all nine societal benefit areas that the Global Earth
Observation System brings (Herold et al. 2008). They are also some of the most critical
variables for climate change studies (Bounoua et al. 2002; Ge et al. 2007; Hibbard et al.
2010; Imaoka et al. 2010). Land-cover data products play a critical role in improving perfor-
mances of ecosystem, hydrologic, and atmospheric models (Tucker, Townshend, and Goff
1985; Bounuoa et al. 2002; Foley et al. 2005; Jung et al. 2006). They are also essential to
studies of habitat and biodiversity (Buchanan et al. 2008; Hall et al. 2011), carbon cycling
(de Moraes et al. 1998; DeFries, Houghton, and Hansen 2002; Ganzeveld et al. 2011; Liu
et al. 2011; Poulter et al. 2011), and public health (Xu et al. 2004; Liang et al. 2010).

Six types of global land-cover maps derived from remotely sensed data are freely
available at 1 km and 300 m scales.

• The 1 km International Geosphere-Biosphere Programme Data and Information
System Cover (IGBP-DISCover) map was produced from monthly normalized dif-
ference vegetation index (NDVI) composites derived from 1992 to 1993 National
Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) data (Loveland et al. 2000). An unsupervised classification
method was used to produce this map.

• The 1 km University of Maryland (UMD) land-cover map was produced with the
same data set as mentioned above (Hansen et al. 2000). A supervised classification
tree method was used to produce this map.

• The 1 km Global Land Cover 2000 (GLC2000) map was produced from monthly
NDVI data derived from 1999 to 2000 Satellite Pour l’Observation de la Terre (SPOT)
vegetation data (Bartholome and Belward 2005). It was produced by people working
separately, in parallel, on 19 different regions of the world using various types of
algorithms.

• 500 m Moderate Resolution Imaging Spectrometer (MODIS) land-cover maps are
now being generated annually with MODIS data (Friedl et al. 2002, 2010). Recently,
a supervised classification tree algorithm has been used to produce these maps.

• 300 m GlobCover land-cover maps were produced with bimonthly Medium
Revolution Imaging Spectrometer (MERIS) data mosaics derived from the
Environmental Satellite (ENVISAT) for 2005 and 2009 (Arino et al. 2008; Bontemps
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et al. 2010). They were produced with an automatic multi-stage classification pro-
cedure using spectral–temporal and phenological information with an unsupervised
classification method.

• The 1 km MODIS land-cover map was derived from the MODIS 1 km monthly
product led by Japan through international collaboration (Tateishi et al. 2011).
A combination of supervised classification and single-class extraction algorithms was
used to make this map.

The classification schemes used by the three US global land cover products (IGBP-
DISCover, UMD, MODIS) used the IGBP classification system with 17 categories of cover
types, whereas the two European products (GLC2000, GlobCover) used a 22 category clas-
sification scheme that was developed for similar purposes by the IGBP system in order to
meet global modelling purposes. This has come about through a standard class definition
and aggregation system developed by the Food and Agriculture Organization (FAO) (Di
Gregorio 2005). All land-cover products were generated by computer classification algo-
rithms of different types but on a per-pixel basis. The overall accuracy (OA) of the IGBP
DISCover map was 66.9% (Scepan 1999), and the GLC2000 map was 68.6% (Mayaux et al.
2006). Cross-validated OA (using training data) for the MODIS product was 78.3% (Friedl
et al. 2002) and 77.9% for GlobCover based on 2186 random samples of homogeneous land
covers (Arino et al. 2008). Through international collaboration, Tateishi et al. (2011) made
use of reference map data from over 180 countries. They developed their own classification
scheme with 20 classes. Using a validation data set of 600 points, they reported an OA of
76.5%.

In spite of these validation assessments, some third-party researchers have found con-
siderably lower accuracies in different parts of the world when verifying the various global
land-cover products (Gong 2009a; Fritz, See, and Rembold 2010). Using 400 field sur-
vey points to assess the MODIS land-cover product, Sedano, Gong, and Ferrao (2005)
found greater than 50% error in the Mozambique Miombo ecosystem over an area of
approximately 100,000 km2. Using over 2000 field samples collected in Siberia covering
approximately 1 million km2, Frey and Smith (2007) found that the OAs for the IGBP
DisCover and MODIS global land-cover products were 22% and 11%, respectively. From
a global comparison of the IGBP DISCover, UMD, MODIS, and GLC2000 data products,
it was found that relatively consistent results can be found only over the snow and ice fields
of Greenland, the desert areas in Africa, and the rain-forests of the Amazon Basin, areas
occupying 26% of the global land surface (MaCallum et al. 2006). From seven selected
500 km × 500 km comparison areas, in Africa, Asia, Australia, Europe, North America,
Russia, and South America, the consistencies among these four global land-cover products
for all but South America were below 20%. Using 250 Fluxnet sites, Gong (2009a) found
that the OAs of the first three global land-cover maps produced with the IGBP classification
system were below 42%. Previous research found that accuracies for different land-cover
categories varied greatly, with evergreen broadleaf forest and desert areas best classified,
but heterogeneous land-cover areas poorly classified (Jung et al. 2006; Herold et al. 2008).

It seems that so far only the evergreen broadleaf and the snow and ice cover classes
have been reliably mapped with certainty. Mixed trees, deciduous broadleaf trees, shrub,
and herbaceous land covers are the most confused classes (Herold et al. 2008; Sterling
and Ducharne 2008). A spatial consistency check revealed that tropical forest, barren, and
snow and ice cover classes are mapped homogeneously, but many transitional zones have
low classification accuracies where finer resolution data are called for (Herold et al. 2008;
Tchuente, Roujean, and de Jong 2011). It was believed that ‘. . . improving the mapping
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2610 P. Gong et al.

of heterogeneous landscapes is the most significant challenge for improving global land-
cover mapping. Future efforts based on finer resolution data may provide improvements’
(Herold et al. 2008). However, this does not come without significant costs for data, local
knowledge, and detailed field data.

Current trends in land-cover classification have shifted from a single general purpose
classification to individual class information extraction for human settlements (Imhoff
1997; Lu et al. 2008; Schneider et al. 2010; Wang et al. 2010), agricultural lands
(Ramankutty and Foley 1998, 1999; Thenkabail et al. 2009), wetlands (Niu et al. 2009;
Giri et al. 2010; Gong et al. 2010), lakes (Sheng, Shah, and Smith 2008), wildland fires
(Pu et al. 2007; Chuvieco, Giglio, and Justice 2008), and quantification of vegetation cover
fractions (DeFries, TownShend, and Hansen 1999; Hansen, DeFries, and Townshend 2002;
Clinton et al. 2009). In addition, classification algorithms have increased from simple statis-
tical classifiers like the widely used maximum likelihood classifier (MLC), to classification
trees (such as the seminal CART and C4.5) to more computationally demanding machine-
learning classifiers such as support vector machines (SVM) and ensemble classifiers such
as Random Forest (RF), and other bagged or boosted classifiers (Witten and Frank 2005).
Due to the improvement of computational efficiency, it is now easier to employ and com-
pare results from a number of different classifiers in a mapping task (e.g. Carreiras, Preira,
and Shima bukuro 2006; Clinton et al. 2009). In the meantime, more and more ancillary
information and remotely sensed data from different sources are being used in land-cover
classification (e.g. Aksoy et al. 2009). From a global perspective, data provided for brows-
ing purposes in virtual globes, particularly Google Earth, have proved useful for their
geometric precision and large volumes of high spatial resolution data available at better
than 1 m level (Yu and Gong 2012).

In summary, existing global land-cover maps derived from remote sensing were all
based on time series of coarser resolution satellite data. The time series is usually for a
specific year. Recent advances in data acquisition, data accessibility, and high-performance
computing make it possible to use finer spatial resolution data for global land-cover map-
ping. In particular, as more Landsat-level data are made freely accessible, it is natural to
consider adopting such medium resolution data for global land-cover mapping purposes.
Although it is still hard to collect medium resolution data for the entire globe in a consis-
tent season or a year, it is possible to use such data in multiple years to cover the entire
globe. Townshend et al. (2012) reported their efforts in mapping global forest cover and
monitoring forest changes using Landsat data. They found that atmospheric interference,
terrain effects, selecting data from the appropriate season in a year, and training sample
selection are particularly challenging.

Despite these difficulties, globally consistent land-cover data from medium resolution
satellite sensors that are an order of magnitude finer than weather satellite sensors have
never been produced, but they are badly needed for many reasons. First, land process
models at regional and global scales need better surface cover fraction data that coarser
resolution data cannot provide. Second, although land-cover data at the medium resolution
exist, in many developed countries, their classification schemes vary widely making them
hard to crosswalk for cross-regional studies such as water resources management in inter-
national river basins, conservation of wildlife and biodiversity, and carbon sequestration
planning through afforestation. This requires a global land-cover map with a consistent
land-cover classification scheme. Third, many developing countries in Africa and Asia do
not have land-cover data at this scale. A global land-cover map can fill this gap.

In this article, we report our first efforts in mapping global land cover with 30 m res-
olution Landsat Thematic Mapper (TM) and Enhanced TM plus (ETM+) data. This was
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International Journal of Remote Sensing 2611

carried out under our Finer Resolution Observation and Monitoring of Global Land Cover
(FROM-GLC) project. Our long-term goal in FROM-GLC is to develop a multiple stage
approach to mapping global land cover so that the results can better meet the needs of
land process modelling and other application needs mentioned earlier that global land-
cover maps produced with coarser resolution data failed to meet. The FROM-GLC project
should also be easily crosswalkable to existing global land-cover classification schemes.
Presented here is our first step that maps broad land-cover categories based on spectral
data only. It is meant to serve as a benchmark for future improvements when spatial and
temporal and other ancillary features are combined. As Landsat-like data are being made
more frequently available, optimal dates for data selection and multiseasonal data in the
same year cannot be used in the future. Future improvements can be expected based on
alternative algorithms such as object-based image classification and selection of data from
more suitable seasons and atmospheric conditions, and use of multitemporal scenes and
new features including vegetation fraction estimated from Landsat-class data, as well as
other information extracted from other sources such as vegetation height, biogeographical
modelling, and analysis of terrain and climate data.

2. Data pre-processing and image classification procedure

A total of 8929 Landsat TM/ETM+ scenes were collected from various sources (Figures 1
and 2). A total of 2181 scenes were collected from the Global Land Cover Facility (GLCF)
at the UMD, 6229 scenes were collected from United States Geological Survey (USGS)
Earth Resources Observation and Science (EROS) data centre, and an additional 519 scenes
were collected from the Satellite Ground Station of China. About 74% of the imagery was
acquired after 2006, while images available before 2006 were used as substitutes for places
where no suitable imagery could be found after 2006 at the time of the project initiation.
Only 18 scenes acquired before 1998 were used. As a result, approximately three quar-
ters of the imagery is circa 2010 and one quarter is circa 2000. Most of the scenes except
those covering China were processed to level L1T (orthorectified), while 161 scenes at
higher latitudes were processed to level L1G (non-orthorectified, Figure 3). Only geomet-
rical correction was applied to the images covering China. Since the non-orthorectified
images were mainly taken over relatively flat areas, terrain effects were considered negli-
gible where orthorectified imagery was unavailable. A total of 40 scenes were randomly
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Figure 1. The temporal distribution of Landsat scenes used in this study (N = 8929).
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(a)

2007 and Before 2008

Legend

2009 2010 2011

(b)

Spring (3–5) Summer (6–8) Autumn (9–11) Winter (12–1)

Legend

Figure 2. Temporal distribution of Landsat scenes used in this study. Annual distributions (a) and
seasonal distribution (b) of scenes.

Figure 3. Processing level distributions. Levels L1T (brown) and L1G (blue).
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Atmospheric
parameters

Radiometric
calibration

Figure 4. Radiometric processing of Landsat TM and ETM+ scenes.

selected to evaluate the geometric discrepancy against Google Earth images. In each scene,
we selected 10 ground control points from typical locations to calculate a root mean square
error (RMSE). We found that only one scene in Russia near the Arctic had an RMSE of
2.76 pixels. The remaining RMSEs were below 1.43 pixels. On average, the RMSE was
1.01 pixels, indicating an acceptable geometric agreement between the Landsat images and
Google Earth images.

Except those images from the GLCF that were already radiometrically corrected to
reduce atmospheric and topographic effects, all remaining L1T images from USGS were
radiometrically corrected with our own software (Figure 4).

The overall work flow of our global land-cover classification is shown in Figure 5. It
involves data pre-processing, training, and test sample collection, image classification on
a scene-by-scene basis using local training samples from spatio-temporal neighbourhood
scenes, and finally accuracy assessment.

The radiometric processing was done automatically using the Global Mapper (GM)
software package developed by ourselves. This processing includes atmospheric correction
and topographic correction. The final product is images of reflectance with the atmospheric
and topographic effects substantially reduced. After automatic processing, manual check-
ing was carried out to ensure correction quality. Scenes with a poor quality correction were
re-processed with manually selected parameter sets.

Atmospheric correction was done with an enhanced version of the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm (Alder-Golden et al.
1999) implemented in the GM (see Section 3). Parameter setup was automatically generated
based on the acquisition time and location information from the imagery and ancillary data.
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2614 P. Gong et al.

Figure 5. Classification workflow.

For example, the elevation information was obtained from the Geospatial Image Pyramid
(GIP) of the global digital elevation model (DEM) data (recognizable by Google Earth and
Environment for Visualizing Images (ENVI)). Aerosol data are inferred from the location
information of each scene and DEM data. The GM FLAASH module also contains an
automatic processing and optimization mechanism. When it detects over-correction of the
imagery, indicated by a large quantity of 0 values, it automatically adjusts the water vapour,
and aerosol parameters, feeding the optimized parameters back into the atmospheric cor-
rection. After the atmospheric correction, the optimized parameters are recycled for use by
the topographic correction procedure.

The topographic correction is based on the TopoRadCor procedure in GM. TopoRadCor
takes the output from the atmospheric correction and uses the 90 m DEM from the GIP as
input. The solar incidence angle is computed based on the DEM and the location and local
time information for each pixel. The topographic correction can reduce the distortion over
higher latitudes and complex terrain. TopoRadCor automatically adjusts to surface cover
type, resulting in a well-characterized surface structure that overcomes over-correction
effects (Figure 6).

Although we tried to collect as many processed scenes as we could, by the time of
training and test sample collection, there were still 656,889 km2 of terrestrial land areas

(a) (b)

5 km

Figure 6. Effect of TopoRadCor process. (a) The original image (Location: Shaanxi, China; centre
latitude 33◦ 22′ 2.40′′ N, centre longitude 107◦ 45′ 20.31′′ E) and (b) The resultant image.
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(excluding Antarctica and Greenland) not covered by our images. These areas were mostly
distributed within the Arctic region. Canada, the USA, Russia, and Norway (Svalbard) were
among the top four countries with the largest un-mapped areas. Among the 8929 scenes
used in this project, 192 scenes were sampled twice by different interpreters due to over-
laps in separate national and continental mapping task assignments. A total of 1007 scenes
(including those 192 scenes mentioned above) share the same Path/Row collected at differ-
ent times. Training samples were collected on all these images resulting in higher sample
density over those overlap areas.

We experimented with four types of classifiers: the traditional MLC, a simple J4.8 deci-
sion tree classifier (an improved version of C4.5), support vector machine (SVM) classifier,
and RF classifier (Bradski 2000; Hall et al. 2009; Chang and Lin 2011). The MLC was
used as a reference for its popularity, computational simplicity, and robustness. Recently,
The SVM classifier has been widely reported as an outstanding classifier in remote sens-
ing (Huang, Davis, and Townshend 2002; Liu, Kelly, and Gong 2006). The RF classifier
was tested due to its reported performance in the machine learning community (Bauer and
Kohavi 1999; Caruna and Niculescu-Mizil 2006). The parameter set used in this study for
each of the classifiers is listed in Table 1.

Representative sample collection is the most time-consuming and labour-intensive pro-
cess in the global land-cover mapping effort. Limited by human power, we could not collect
as many training samples as we would have liked for each class in every scene. We used
samples collected in neighbouring scenes to augment training samples. Training samples
collected from any particular scene were pooled with samples from a certain number of
neighbouring scenes and were used to train a classifier for that particular scene. This is not
usually needed in training sample collection when mapping areas are smaller in size but is
considered to be a necessary alternative for global mapping. The selection rule is set to be
30 neighbouring scenes that meet the spatial and temporal criteria. The search for spatial
neighbour images is limited within each of the ecoregions as defined by the World Wildlife
Fund (Olson et al. 2001). Temporal neighbour images are based on the acquisition date of
images. At first, image acquisition time is ± 30 days from the current image. If 30 neigh-
bourhood scenes cannot be found, the time is relaxed to ± 60 days. If 30 neighbourhood

Table 1. Classification algorithms and parameter settings.

Classifiers Implementation Parameters Remarks

MLC OpenCV Default Naïve/normal Bayes
classifier

RF WEKA Calculate the variable importance of
each feature during training: true

Size of the randomly selected
subset of features to be tested at
any given node: 2

Maximum tree count: 50
J4.8 WEKA Minimum number of object per

leaf: 2
Confidence factor for pruning: 0.1
Unpruned: false

SVM LibSVM Kernel: RBF
C (cost): 100
gamma: 0.1
Probability estimates: false

Data were scaled to
[0, 1] before
training and
classification

Note: RBF, radial basis function.
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scenes are still not available, the time is further relaxed to ± 90 days. If still 30 neighbour-
hood scenes cannot be found, use what is available. All bands except the thermal band of
the TM or ETM+ images were used in the classification.

All image classification tasks were done on the supercomputer at Tsinghua University.
The total disk space of this supercomputer exceeds 1000 TB. The system has 740 nodes,
each of which is equipped with 2 Intel Xeon X5670 CPU (6 Kernels, 2.93 GHz, 12 MB
Cache) and 32–48 GB of memory. Our application employed less than 1.5 GB memory in
each kernel and less than 18 GB for each node. The total volume of our data input to the
supercomputer is 3 TB, and our total output data volume is approximately 2.5 TB. A maxi-
mum of 1200 cores was used for any one part of the processing. The parallelization scheme
for running the classification on the supercomputer is straightforward. An approximately
equal number of scenes is assigned to each core, and their processing results are stored on a
scene-by-scene basis. With 1200 cores, it takes approximately 6 days to complete the SVM
classification of all images. If all cores are used on this supercomputer, the classification
task can be done within a day for the entire world. The low computation efficiency of the
SVM is the major reason for us to use the parallel computer.

3. Global mapping software development

In order to support global land-cover mapping and analysis, we developed software to
expand the image processing and spatial data analysis functionality in Google Earth (Gong
et al. 2011; Yu and Gong 2012). Basic functions commonly found in geographic infor-
mation system (GIS) software packages for data editing, spatial database development,
and map overlay are included in the software package, Global Analyst (GA) (http://www.
globalanalyst.cn/ga2/index.html). GA is a GIS, based on a spherical coordinate system,
that encapsulates Google Earth. GA integrates the functions from two different systems
(GIS and remote sensing (RS)) and adopts advanced software technologies such as cloud
computing, scalable architecture, and multilingual hybrid programming. In GA, glob-
ally distributed multisource, multiscale, multitemporal geospatial (e.g. shp., and tif.) data
and services (e.g. WMS, WCS, and WFS) can be aggregated or mashed-up. Customized
functions for particular applications can be added into GA with JavaScript.

To handle arbitrary images in addition to those provided in Google Earth, we developed
a software package GM that enables image processing coupled with Google Earth image
display and visualization. When an image processing task starts, it not only opens the image
but also opens Google Earth and automatically synchronizes the two by their locations. This
along with GA has greatly improved the efficiency of training and test sample collection
(Figure 7).

4. Classification system design

Existing global land-cover maps were produced for different purposes from different types
of data with different types of algorithms. Some were developed by different groups of cre-
ators. Their classification schemes and implementations are also inconsistent. As a result,
a thorough comparison of different land-cover maps is challenging if not impossible. Even
so, some efforts have been made to crosswalk and compare these results (Herold et al. 2008;
Tateishi et al. 2011).

Based on the analysis of existing classification systems, we found that there are major
limitations to using a composite class type that combines vegetation trait, structure, and
life-form information in a fixed manner. Taking the IGBP, GLC2000, and GLOBCover
classification systems as examples, although the three systems differ in some details, they

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



International Journal of Remote Sensing 2617

1.00

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.75

0.50

0.25

0.00

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

Time series

Figure 7. Test sample identification with a pre-determined sample location. The background is
Google Earth image with TM image, the spectral curve, and the MODIS time-series vegetation index
curve shown in the pop-up box.

have high consistency as well. All vegetation categories contain life form, canopy closure,
and height specifications, but different thresholds within a category. The IGBP system spec-
ifies that woody vegetation under 2 m height is classified as shrubs whereas the height limit
was increased to 3 m in the GLC2000 and 5 m in the GlobCover classification systems.
Similarly, the canopy closure in different vegetation classes varied among the classifica-
tion systems. Most land-cover classification systems do not include the distinction between
C3 and C4 photosynthetic types but they are needed for land surface process models
(DeFries et al. 1995; Dai et al. 2003). However, such information is hard to obtain from
remotely sensed data. Additional data sources or biogeographical modelling results are
often considered for obtaining such information (Stirling and Ducharne 2008).

In our design, we chose to build a system separating the trait, life form, and structural
information into distinct layers, retaining the original quantitative structural information
as much as possible. We treat traits, life form, and structural data as basic building blocks
towards the construction of a complete classification system. We call these building blocks
end-components. Table 2 lists the level 1 land-cover categories of GlobCover with a decom-
position of its classes into end-components. From Table 2, it can be seen that a composite
class can be defined in terms of four types of end-components: cover type, life form or
plant functional type (PFT), canopy or crown closure, and height. Through a decomposition
analysis, most complicated land-cover classification systems can be divided into simplified
end-component classes. There are a total of 10 land-cover types and eight life form or PFT
classes. Canopy closure and heights can be preserved in unclassified form in their original
quantities. As we de-coupled the nominal cover-type end-component from canopy closure
and height end-components that can be quantitatively characterized, we were able to define
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Table 2. A decomposition of the GlobCover land-cover classes into end-components.

Code
Description of composite

classes Cover type Form/PFT
Closure

(%)
Height

(m)

11 Post flooding or irrigated cr Cropland C3/C4
14 Rainfed croplands Cropland C3/C4
20 Mosaic cropland/vege Crop/vege C3/C4 50–70
30 Mosaic vege/cropland Crop/vege C3/C4 50–70
40 >15%-BL-EG/Semi

DFo>5 m
Forest BL EG/D >15 >5

50 >40% BL D Fo>5 m Forest BL D >40 >5
60 15–40% BL D Fo>5 m Forest BL D 15–40 >5
70 >40% NL EG Fo>5 m Forest NL EG >40 >5
90 15–40% NL D EG Fo>5 m Forest BL D/EG 15–40 >5
100 >15% ML Fo>5 m Forest BL/NL >15 >5
110 MoFo/Sh(50–70%)/G

(20–50)
Fo/shrub/grass C3/C4 50–70

120 MoG(50–70)/F/Sh(20–50) Fo/shr/grass C3/C4 50–70
130 >15% Sh(<5 m) Shr C3/C4 >15 <5
140 >15% G Grassland C3/C4 >15
150 <15% Vege Vege C3/C4 <15
160 >40% BL FoRegFl Fresh Inland fowetl BL >40
170 >40% semi BL EG

regFl Sal
Coastal fowetl BL semi D/EG >40

180 >15% vege on regFl
or w log

Marshland Watered veg/
C3/C4

>15

190 Artificial (urban > 50%) Urban >50
200 Bare Bare Wd/Wt form
210 Water Water
220 Permanent snow/ice Snow/ice

mixture land-cover classes more precisely than previous land-cover classification systems.
We can resolve any land-cover class in a new classification system that contains those quan-
titative end-components. In fact, different types of end-components should be derived from
different sources of data or by different types of algorithms. For example, the canopy clo-
sure can be derived by applying linear unmixing or regression techniques (Gong, Miller,
and Spanner 1994; Roberts et al. 1998; Hansen, DeFries, and Townshend 2002) to the
spectral data, whereas vegetation height information can be obtained from other sources of
data such as stereo pairs of images (Gong 2002), interferometry of synthetic aperture radar
(SAR) data (Neumann, Ferro-Famil, and Reigber 2010), or the use of lidar data (Lefsky
2010; Hall et al. 2011; Simard et al. 2011). We argue that future classification systems
should be separately designed for different types of end-components. This will make such
systems easily crosswalkable to existing classification systems using an end-component
and layered approach.

Based on the end-component analysis and the potential of only six bands of spec-
tral data from TM and ETM+ imagery, we targeted the determination of the cover-type
end-component at this initial stage of global land-cover mapping. In addition, we included
some life form categories spectrally separable from the TM data such as broadleaved and
coniferous trees (at level 2). The resultant classification scheme, with a two-level hierarchy
involving only the cover-type end-component, is listed in Table 3.
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In this scheme, we try to avoid the use of the land use concept as much as possible. For
example, only land covered by crops is included as cropland. Harvested agricultural land
and grazed grassland with traces of cultivation are listed under barren land in consideration
of their land-cover function. Similarly, there are areas that are seasonally varying. For exam-
ple, lakes in arid areas can look like barren land during the dry season but like waterbodies
during the wet season. Lakes in tropical and subtropical areas may exhibit totally different
cover types ranging from bare land, vegetation, to water surfaces due to large fluctuation
of water levels (e.g. Poyang Lake, the largest freshwater lake in China, Dronova, Wang,
and Gong 2011). In training sample selection from the Landsat TM/ETM+ imagery, we
followed a ‘what you see is what you get’ principle to prevent subjective inference of image
information from apparent land use.

Based on these considerations, we did not include the urban class as it is a compound
class reflecting land use. Wetland is a class that encompasses a large number of geomor-
phological sub-categories such as marine, estuarine, riverine, lacustrine, and palustrine
wetlands (Cowardin et al. 1977). Temporally, they can be divided into permanent, sea-
sonal, and intermittent. Spectrally, they vary among water, barren land, and vegetation.
Vegetated marsh lands are probably the only spectrally unique wetland category that can
be discerned from TM and ETM+ imagery. In addition, marshland is one of the most
productive wetlands and is biologically significant for conservation reasons. At level 2, an
inundated marsh-land with emergent vegetation is included as a wetland class. In addition,
wet muddy bare land such as a wet lake bottom or a wet silt land at coastal areas that are
spectrally unique is chosen as a second wetland class. At level 1, marshland is merged
into grassland but wet muddy bare land is merged into bare land in consideration of their
land-cover function. Forested wetlands and other wetlands are not specifically treated as
individual classes and they will be extracted using special algorithms and additional data
types such as surface hydrology, terrain, and SAR data in the future. Therefore, in this clas-
sification, we did not have a wetland class at level 1. Similarly, we did not have a specific
land-cover class of tundra at level 1, as it is primarily composed of shrub and grass with a
very short unfrozen growing season. The shrub tundra and grass tundra are defined as dif-
ferent classes at level 2 but separately merged into the shrub and grassland level 1 classes.
In this fashion, barren land should include bare agricultural fields, dry season lake bottoms
and seasonal river channels. This problem can be addressed by regrouping the second-level
land-cover classes into level 1 classes. For example, harvested agricultural lands are merged
into agricultural lands when needed. This problem can be better addressed by applying
multitemporal data obtained from coarser resolution sensors such as MODIS or MERIS to
produce the next generation land-cover map. A more complete wetland cover class, tundra,
and land-use categories of agricultural land shall be separately extracted from time-series
remotely sensed data in addition to other ancillary data such as terrain, hydrology, and cli-
mate data. Urban land will be extracted either with an object-based image segmentation
and classification approach (Wang et al. 2010) or a cover-frequency approach (Gong and
Howarth, 1992a, 1992b).

5. Training and test sample collection

Representative training samples are one of the most critical components in supervised clas-
sification. The quality as well as the quantity and distribution of these samples are all
important. To collect a large volume of training data most efficiently, we used the following
criteria to select training samples.

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



International Journal of Remote Sensing 2625

(1) Training samples must be homogeneous; land-cover mixtures and heterogeneous
areas are avoided.

(2) All samples must be at least 8 pixels × 8 pixels in size to approximate a 250 m
MODIS pixel size to support future classification of 250 m MODIS data.

(3) The land-cover category must be interpreted based on what can be derived from the
TM image. Google Earth images and temporal data at the same location are treated
as reference only.

(4) About 10–20 samples are required to be selected from each scene, and no more
than three samples for each category (unless a scene is homogeneous, such as in
the Sahara or tropical rainforest areas).

(5) Samples should be distributed in a scene as representative of the major classes
present in the scene as possible.

Training samples were selected by traversing all 8929 available Landsat images. A total
of 27 image analysts who have experience in remote-sensing image interpretation were
selected to work on training sample collection in the initial round. Our training sample
selection involved the following four steps.

(1) All 27 interpreters, including four test sample interpreters, were trained together for
sample selection by the same group of experts, who are from or familiar with land-
cover types of different areas of the world. Practice sessions were done over China.
Several interpreters have field experiences in Canada, USA, Europe, and Australia.

(2) Initial interpretation: 23 of the 27 analysts performed the initial training sample
selection according to the selection criteria.

(3) Initial interpretation results were passed to another interpreter for cross-checking.
(4) Cross-checked initial interpretation results were submitted to one of the four quality

controllers for final checking.

The four quality controllers were selected from the 23 interpreters based on their
distinguished interpretation performance (according to the quality and distribution of
samples they had collected during the practice stage). They were requested to com-
ment on the interpretation results and change the location of samples when the initial
samples did not meet the sample selection criteria. When samples were not easy to inter-
pret, quality controllers flagged them and entered a comment in a table of attributes
(Table 4).

In the second round, training samples were refined by 10 high-quality image interpreters
with additional information of time series vegetation index data from the 2010 annual
MODIS EVI data product. The interpreters were evaluated for their strength and skill
for different land-cover classes, and they were assigned to make refinement of the
classes with which they were most familiar. The advantage of including the MODIS time
series data was to help improve the separation between cultivated bare lands and nat-
ural barren lands, and distinguish sparsely vegetated land from more persistent barren
land.

Table 4. Attributes for training sample collection.

ID
Img-
name

Type
code

Large
sample

High
resolution Confidence

Cross-
check

Quality
control Comment Notes
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The attribute table (Table 4) was designed to contain the following.

(1) ID: the ID for a sample in a scene.
(2) Image Name: the name of the Landsat image.
(3) Type Code: land-cover type according to the classification system.
(4) Large sample: empty if the sample is a large sample (indicating land cover is

homogeneous, at least 500 m around a sample location), ‘0’ otherwise.
(5) High resolution: empty if higher resolution (compared to 30 m in TM/ETM+)

imagery is accessible on Google Earth at the sample location, ‘0’ otherwise.
(6) Confidence: empty if the interpreter has confidence for this sample, ‘0’ or ‘1’ if

he/she is ‘not sure’ (confusion at level 2, but sure for level 1) or ‘highly uncertain’
(confusion at level 1), respectively.

(7) Cross-check comment: Type Code when another interpreter does not agree with the
initial interpreter.

(8) Quality controller comment: Type Code when the controller does not agree with
the interpreter.

(9) Final comment: empty.
(10) Notes: other information relevant to the sample.

A customized set of software tools implemented in GM was provided to the interpreters.
The software set allowed the interpreters to simultaneously open the Landsat imagery,
location synchronized Google Earth imagery, and MODIS time-series vegetation index
curve. Spectral curves and digital elevation data could be visualized as needed. Frequent
meetings were held to discuss areas difficult to interpret. Before training on sample collec-
tion, some interpreters conducted field works in Canada, Russia, Western Europe, Middle
Chile, and the tropical and temperate zones of Brazil. The sample collection began with
China and then proceeded to Europe, where high resolution data are extensively avail-
able and reference maps can be checked for quality assurance. Regional experts from
Russia, Europe, Africa, and the Tropics were brought in to help answer questions related
to their areas of expertise. Several auxiliary data sets were provided to the interpreters
for reference in sample selection/checking. They include the World Terrestrial Ecoregions
Map (Olsen et al. 2001), Global Ecological Map of the World (FAO 2001), Atlas of
World Physical Geography (Zheng, Mei, and Zhong 2009), and Atlas of China Physical
Geography (Liu 2007). Additional Internet search efforts and discussions were made by
individual interpreters when needed for solving uncertain issues.

In total, 91,433 training samples were collected. The distribution of these samples is
shown in Figure 8. The proportions of different attributes (i.e. large sample, high resolution,
confidence) of the samples are listed in Table 5. Although efforts were made to reduce
uncertainties in training sample collection, approximately 4% of the training samples that
were uncertain have been included in the classification.

In the first round, test samples were collected primarily by four image interpreters who
did not participate in the training sample collection. Test samples were preset in a sys-
tematic unaligned manner. Their locations were fixed and could not be changed by the
interpreters. First, the entire globe was partitioned by a hexagonal scheme (Icosahedral
Snyder Equal Area Discrete Global Grids (ISEA DGGs)), which was generated from
DGGRID software available online (http://webpages.sou.edu/~sahrk/dgg/dggrid/dggrid.
html) such that the world’s total land area was divided into approximately 7000 equal area
hexagons (Figure 9). We initially randomly assigned 10 samples in each hexagon for China
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Figure 8. Training sample distribution (blue colour).

Table 5. Statistics of training sample attributes (N = 91,433).

Sample types and quality Percent of total

Large sample – homogeneous area greater than 500 m × 500 m 77.04% (70,441/91,433)
High resolution images available in Google Earth 74.97% (68,551/91,433)
Confidence level – sure 95.75% (87,548/91,433)
Confidence level – not sure 4.12% (3770/91,433)
Confidence level – highly uncertain 0.13% (115/91,433)

and Europe. By evaluating the effect of the test sample density on resultant accuracy mea-
sures, we found that alteration of the number of samples per hexagon (between three and
five) did not cause much change in the final accuracy assessment. For the whole world,
we set five random samples for each hexagon. In the second round, we assigned three top
quality image interpreters to make refinement of the test sample, with additional MODIS
EVI time series data as reference.

According to the attribute requirement as specified in Table 6, we collected 38,664 test
samples (Table 7 and Figure 10), 2034 of which were not used for accuracy assessment,
leaving 36,630 valid test samples. The unused samples were discarded due to the fact that
they did not meet minimal criteria (e.g. (1) ‘very unsure’ samples; (2) sample location is
out of a scene (in background near the edge of an image); (3) samples located in the sea;
and (4) samples located in shadows, under clouds, or on steep slopes).

6. Results

Figure 11 shows global land-cover maps derived from each classification algorithm. It can
be seen that barren lands and forests are among the most abundant classes. Because there
are significant temporal differences among the scenes, patch effects can be observed.
Tables 8–11 list the confusion matrices corresponding to each classifier. These tables were
calculated based on the 36,630 valid test samples. Among the four algorithms, the OAs
at the global scale based on our test samples are 64.89%, 59.83%, 57.88%, and 53.88%,
respectively, with the SVM, RF, J4.8, and MLC.

Among the classes, snow and ice are classified with the best accuracies (85.66% for the
producer’s accuracy and 95.61% for the user’s accuracy). This is followed by waterbodies,
barren lands, and forests. Impervious areas, croplands, grasslands, and shrublands are
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Figure 9. Test sample allocation design.

Table 6. Attributes for test sample collection.

ID
Img-
name

Type
code

Large
sample

High
resolution Confidence Pure

Cross-
check

Quality
control Comment Notes

Table 7. Summary of test samples (N = 38,664).

Sample types and quality Percentage of total

Large sample – homogeneous area greater than 500 m × 500 m 37.82% (14,623/38,664)
High resolution images available in Google Earth 59.39% (22,962/38,664)
Confidence class – sure 80.80% (31,241/38,664)
Confidence class – not sure 12.42% (4798/38,664)
Confidence class – highly uncertain 6.78% (2625/38,664)
Pure pixel 62.43% (24,138/38,664)
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Figure 10. Distribution of test samples (red colour).

poorly classified. Some of the accuracies for impervious lands fall below 20%. The
accuracies for croplands, grasslands, and shrublands are below 50%.

Although our focus is on the mapping of Level 1 classes that have been aggregated from
the classification of Level 2 classes, it is relevant to present the confusion matrix for Level
2 classes obtained with the SVM as an example (Table 12). The OA for Level 2 classes is
52.76%. In the remainder of this article, we shall only discuss the mapping results for Level
I classes.

The distribution of wrongly classified sample locations (Figure 12) can be seen clearly.
Errors are distributed along transitional zones such as the South Sahel from dry to
humid climates, the boreal ecosystem ecotones of forests, shrubs, grasslands and wet-
lands, and some of the mountain ranges such as the Rocky Mountains, and the east
edge of the Andes. In addition, Kazakhstan, southeast Europe, and India are particularly
problematic.

At the continental level, all continents are classified between 50% and 70% OA with
Oceania at the low end and Africa at the high end (Table 13).

If we single out big, pure samples that have high resolution Google Earth imagery for
verification, the OA from the SVM increases to 71.5% globally (Table 14). With these
samples, the certainty of land-cover interpretation is high. This group of samples can
be used to assess other global land-cover products such as those produced with MODIS
and MERIS. Table 13 represents the best accuracy we observed in the 30 m land-cover
products.

The classification accuracies can also be analysed at the national level. Table 15 lists
the OAs of the top 50 countries that are ranked by area. The total area of these coun-
tries accounts for 86% of the global land territory. Among the top 10 largest countries,
the classification accuracy of only Kazakhstan falls below 50% (Table 15). This is largely
caused by confusion between croplands and pasture, which when looked at from a land-use
perspective should be considered to be agricultural land and when looked at from a land-
cover perspective should be considered to be grassland. The worst accuracies are found in
Africa. The classification accuracy of South Sudan falls below 40%. All but two countries
in the top 50 falling below 50% are found in Africa including Angola, Ethiopia, Tanzania,
Mozambique, Zambia, South Sudan, Central Africa, and Kenya. The other two countries
are Kazakhstan and Thailand. From Figure 13, it can be seen that the arid areas are best
classified but the southern half of Africa has the lowest classification accuracy. Out of the

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



2630 P. Gong et al.

(a
) 

M
L

C
(b

) 
J4

.8

(c
) 

R
F

(d
) 

SV
M

C
ro

pl
an

ds
Fo

re
st

G
ra

ss
la

nd
s

Sh
ru

bl
an

ds
W

at
er

bo
di

es
Im

pe
rv

io
us

 a
re

as

L
eg

en
d

B
ar

e 
la

nd
s

Sn
ow

 a
nd

 I
ce

C
lo

ud
s

U
nc

la
ss

if
ie

d

Fi
gu

re
11

.
A

sy
no

pt
ic

vi
ew

of
th

e
gl

ob
al

la
nd

-c
ov

er
pr

od
uc

ts
de

ri
ve

d
w

it
h

M
L

C
(a

),
J4

.8
(b

),
R

F
(c

),
an

d
S

V
M

(d
).

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



International Journal of Remote Sensing 2631

Ta
bl

e
8.

C
on

fu
si

on
ta

bl
es

fo
r

th
e

gl
ob

al
la

nd
-c

ov
er

m
ap

pr
od

uc
td

er
iv

ed
w

it
h

S
V

M
.

S
V

M
C

ro
pl

an
ds

Fo
re

st
s

G
ra

ss
la

nd
s

S
hr

ub
la

nd
s

W
at

er
bo

di
es

Im
pe

rv
io

us
ar

ea
s

B
ar

e
la

nd
s

S
no

w
an

d
ic

e
C

lo
ud

s
To

ta
ln

um
be

r
U

A
(%

)

C
ro

pl
an

ds
10

91
66

7
45

3
78

10
33

62
1

15
24

10
45

.2
7

Fo
re

st
s

45
9

88
74

84
3

68
4

49
35

38
1

42
11

,0
25

80
.4

9
G

ra
ss

la
nd

s
44

5
86

2
20

62
96

6
20

28
26

8
5

17
46

73
44

.1
3

S
hr

ub
la

nd
s

15
2

56
7

47
3

15
71

1
9

39
1

0
0

31
64

49
.6

5
W

at
er

bo
di

es
22

12
1

49
23

12
72

4
61

19
8

15
79

80
.5

6
Im

pe
rv

io
us

ar
ea

s
5

4
4

5
5

28
28

0
12

91
30

.7
7

B
ar

e
la

nd
s

59
9

39
9

19
81

12
87

58
12

5
76

53
41

58
12

,2
01

62
.7

2
S

no
w

an
d

ic
e

0
6

5
2

9
0

4
67

5
5

70
6

95
.6

1
C

lo
ud

s
8

10
8

42
13

9
4

7
46

54
4

78
1

69
.6

5
To

ta
ln

um
be

r
27

81
11

,6
08

59
12

46
29

14
33

26
6

85
12

78
8

70
1

36
,6

30
PA

(%
)

39
.2

3
76

.4
5

34
.8

8
33

.9
4

88
.7

6
10

.5
3

89
.9

1
85

.6
6

77
.6

0
64

.8
9

N
ot

e:
N

um
be

rs
of

co
rr

ec
tly

cl
as

si
fi

ed
te

st
in

g
sa

m
pl

es
ar

e
in

bo
ld

.

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



2632 P. Gong et al.

Ta
bl

e
9.

C
on

fu
si

on
ta

bl
es

fo
r

th
e

gl
ob

al
la

nd
-c

ov
er

m
ap

pr
od

uc
td

er
iv

ed
w

it
h

R
F

cl
as

si
fi

ed
.

R
F

C
ro

pl
an

ds
Fo

re
st

s
G

ra
ss

la
nd

s
S

hr
ub

la
nd

s
W

at
er

bo
di

es
Im

pe
rv

io
us

ar
ea

s
B

ar
e

la
nd

s
S

no
w

an
d

ic
e

C
lo

ud
s

To
ta

ln
um

be
r

U
A

(%
)

C
ro

pl
an

ds
10

59
92

8
52

9
17

3
19

27
10

7
0

9
28

51
37

.1
4

Fo
re

st
s

37
8

77
62

69
3

65
4

53
44

74
5

58
97

21
79

.8
5

G
ra

ss
la

nd
s

52
7

11
38

20
10

98
9

51
33

38
2

6
13

51
49

39
.0

4
S

hr
ub

la
nd

s
17

0
96

0
63

0
13

61
3

8
43

6
0

1
35

69
38

.1
3

W
at

er
bo

di
es

47
21

0
81

46
12

15
4

86
20

9
17

18
70

.7
2

Im
pe

rv
io

us
ar

ea
s

27
36

33
32

9
42

13
9

1
30

34
9

12
.0

3
B

ar
e

la
nd

s
56

1
45

6
18

89
13

55
70

10
4

72
73

40
54

11
,8

02
61

.6
3

S
no

w
an

d
ic

e
0

7
7

2
9

0
6

67
1

6
70

8
94

.7
7

C
lo

ud
s

12
11

1
40

17
4

4
9

45
52

1
76

3
68

.2
8

To
ta

ln
um

be
r

27
81

11
,6

08
59

12
46

29
14

33
26

6
85

12
78

8
70

1
36

,6
30

PA
(%

)
38

.0
8

66
.8

7
34

.0
0

29
.4

0
84

.7
9

15
.7

9
85

.4
4

85
.1

5
74

.3
2

59
.8

3

N
ot

e:
N

um
be

rs
of

co
rr

ec
tly

cl
as

si
fi

ed
te

st
in

g
sa

m
pl

es
ar

e
in

bo
ld

.

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



International Journal of Remote Sensing 2633

Ta
bl

e
10

.
C

on
fu

si
on

ta
bl

es
fo

r
th

e
gl

ob
al

la
nd

-c
ov

er
m

ap
pr

od
uc

td
er

iv
ed

w
it

h
J4

.8
cl

as
si

fi
er

.

J4
8

C
ro

pl
an

ds
Fo

re
st

s
G

ra
ss

la
nd

s
S

hr
ub

la
nd

s
W

at
er

bo
di

es
Im

pe
rv

io
us

ar
ea

s
B

ar
e

la
nd

s
S

no
w

an
d

ic
e

C
lo

ud
s

To
ta

ln
um

be
r

U
A

(%
)

C
ro

pl
an

ds
10

32
97

9
53

6
20

8
27

31
16

0
0

13
29

86
34

.5
6

Fo
re

st
s

41
1

75
67

76
4

64
6

59
39

13
6

7
58

96
87

78
.1

1
G

ra
ss

la
nd

s
52

2
11

81
19

12
10

18
52

37
44

7
6

14
51

89
36

.8
5

S
hr

ub
la

nd
s

19
2

96
2

63
7

12
81

6
8

46
1

2
2

35
51

36
.0

7
W

at
er

bo
di

es
47

24
2

10
3

64
11

92
7

94
20

5
17

74
67

.1
9

Im
pe

rv
io

us
ar

ea
s

34
51

66
44

14
43

20
4

3
31

49
0

8.
78

B
ar

e
la

nd
s

53
2

50
5

18
46

13
50

66
98

69
93

36
58

11
,4

84
60

.8
9

S
no

w
an

d
ic

e
0

8
7

4
9

0
5

67
1

11
71

5
93

.8
5

C
lo

ud
s

11
11

3
41

14
8

3
12

43
50

9
75

4
67

.5
1

To
ta

ln
um

be
r

27
81

11
,6

08
59

12
46

29
14

33
26

6
85

12
78

8
70

1
36

,6
30

PA
(%

)
37

.1
1

65
.1

9
32

.3
4

27
.6

7
83

.1
8

16
.1

7
82

.1
5

85
.1

5
72

.6
1

57
.8

8

N
ot

e:
N

um
be

rs
of

co
rr

ec
tly

cl
as

si
fi

ed
te

st
in

g
sa

m
pl

es
ar

e
in

bo
ld

.

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



2634 P. Gong et al.

Ta
bl

e
11

.
C

on
fu

si
on

ta
bl

es
fo

r
th

e
gl

ob
al

la
nd

-c
ov

er
m

ap
pr

od
uc

td
er

iv
ed

w
it

h
M

L
C

.

M
L

C
C

ro
pl

an
ds

Fo
re

st
s

G
ra

ss
la

nd
s

S
hr

ub
la

nd
s

W
at

er
bo

di
es

Im
pe

rv
io

us
ar

ea
s

B
ar

e
la

nd
s

S
no

w
an

d
ic

e
C

lo
ud

s
To

ta
ln

um
be

r
U

A
(%

)

C
ro

pl
an

ds
69

7
84

4
42

5
23

8
21

16
84

0
5

23
30

29
.9

1
Fo

re
st

s
47

9
65

79
61

1
64

2
60

27
53

0
21

84
72

77
.6

6
G

ra
ss

la
nd

s
69

2
14

04
18

26
79

5
51

44
34

7
2

12
51

73
35

.3
0

S
hr

ub
la

nd
s

33
5

18
27

11
48

13
19

6
7

40
8

0
2

50
52

26
.1

1
W

at
er

bo
di

es
32

21
0

73
36

11
62

4
81

15
4

16
17

71
.8

6
Im

pe
rv

io
us

ar
ea

s
82

16
6

18
0

19
0

28
89

61
9

6
71

14
31

6.
22

B
ar

e
la

nd
s

44
2

36
6

15
90

13
76

67
76

68
81

43
51

10
,8

92
63

.1
7

S
no

w
an

d
ic

e
3

14
7

5
17

0
6

65
4

5
71

1
91

.9
8

C
lo

ud
s

19
19

8
52

28
21

3
33

68
53

0
95

2
55

.6
7

To
ta

ln
um

be
r

27
81

11
,6

08
59

12
46

29
14

33
26

6
85

12
78

8
70

1
36

,6
30

PA
(%

)
25

.0
6

56
.6

8
30

.8
9

28
.4

9
81

.0
9

33
.4

6
80

.8
4

82
.9

9
75

.6
1

53
.8

8

N
ot

e:
N

um
be

rs
of

co
rr

ec
tly

cl
as

si
fi

ed
te

st
in

g
sa

m
pl

es
ar

e
in

bo
ld

.

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



International Journal of Remote Sensing 2635

Ta
bl

e
12

.
C

on
fu

si
on

ta
bl

e
fo

r
th

e
gl

ob
al

la
nd

-c
ov

er
m

ap
pr

od
uc

td
er

iv
ed

w
it

h
S

V
M

fo
r

L
ev

el
II

cl
as

se
s.

99
9

11
12

13
21

22
23

24
31

32
40

51
52

61
62

63
64

71
72

81
82

91
92

93
94

95
96

10
1

10
2

S
um

U
A

(%
)

99
9

54
4

0
0

8
76

19
11

2
2

15
4

1
1

3
1

2
3

9
24

3
1

1
1

3
1

0
0

41
5

78
1

69
.6

5
11

0
21

0
5

17
1

1
1

0
0

0
3

0
1

1
2

2
0

0
0

0
1

1
1

2
0

0
0

0
60

35
.0

0
12

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
4

0.
00

13
14

14
1

10
50

47
4

67
68

36
11

4
31

5
77

21
0

3
1

0
0

0
0

12
21

1
1

3
52

0
0

0
0

23
45

44
.7

8
21

42
3

0
41

5
52

59
24

9
30

3
85

11
9

28
2

46
7

58
3

3
2

2
24

0
0

14
19

0
2

4
16

0
0

0
0

73
71

71
.3

5
22

0
0

0
31

19
4

22
06

32
7

6
12

23
4

12
5

38
0

16
0

0
2

87
86

0
2

0
0

8
4

0
1

1
0

33
80

65
.2

7
23

0
0

0
10

13
6

49
47

1
0

14
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

26
1

18
.0

1
24

0
0

0
0

10
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
11

0.
00

31
0

0
0

9
5

0
0

0
6

4
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

26
23

.0
8

32
16

0
0

43
0

45
3

22
4

10
0

12
11

4
11

28
63

6
38

3
1

0
0

4
72

18
0

13
14

4
3

13
2

81
3

29
2

0
36

92
30

.5
5

40
0

2
0

15
0

44
5

99
16

7
32

39
2

15
46

24
0

1
0

0
0

6
9

2
7

1
39

20
5

13
6

1
9

0
0

31
29

49
.4

1
51

1
0

0
6

26
15

1
0

0
8

11
35

0
8

0
4

0
9

13
0

0
1

0
2

0
1

0
0

0
14

1
24

.8
2

52
0

0
0

1
0

0
0

0
0

0
2

0
0

2
0

0
0

0
0

0
0

2
0

1
1

1
0

2
0

12
0.

00
61

1
0

0
4

37
20

6
0

1
12

9
10

4
65

3
3

48
19

6
3

6
0

1
1

4
17

0
1

0
11

3
10

51
62

.1
3

62
0

2
0

4
9

3
0

0
0

0
1

2
0

41
21

17
38

0
0

1
1

0
0

0
3

0
0

0
0

14
3

14
.6

9
63

6
6

0
6

36
7

1
0

0
2

6
8

8
44

6
65

37
3

4
0

1
0

2
5

8
1

0
2

3
26

7
24

.3
4

64
1

0
0

0
2

0
0

0
0

1
1

1
1

8
1

4
90

0
2

0
0

0
2

4
0

0
0

0
0

11
8

76
.2

7
71

0
0

0
0

0
0

0
0

0
4

0
4

0
0

0
0

0
19

8
0

0
0

0
0

0
0

0
0

0
35

54
.2

9
72

0
0

0
0

2
18

6
0

0
28

3
10

0
1

0
0

2
23

4
49

8
0

0
0

0
9

0
0

0
3

0
81

4
61

.1
8

81
7

0
0

1
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

4
1

2
2

6
3

0
0

0
0

28
14

.2
9

82
5

0
0

4
3

0
0

1
0

2
3

1
5

1
1

0
3

1
0

10
13

0
1

3
5

0
1

0
0

63
20

.6
3

91
3

0
0

0
0

0
0

1
0

3
6

1
1

0
0

1
0

0
0

1
0

16
4

9
0

3
0

5
0

54
29

.6
3

92
5

0
0

0
1

1
0

0
1

16
10

5
0

2
0

0
0

1
0

5
4

0
5

15
30

85
2

27
8

2
4

1
25

70
59

.5
3

93
35

0
0

26
20

10
2

17
0

24
69

9
59

6
27

6
14

1
9

16
11

5
41

9
19

19
26

43
9

27
04

20
8

26
26

23
0

56
16

48
.1

5
94

10
8

3
55

9
16

5
43

18
29

98
63

7
43

2
20

4
1

3
3

1
8

19
33

47
3

40
31

5
13

05
9

24
0

1
38

38
34

.0
0

95
5

0
0

0
1

0
0

0
0

6
2

2
0

2
0

0
2

0
0

1
0

14
3

19
0

4
0

5
0

66
6.

06
96

0
0

0
2

1
0

0
0

0
3

21
1

0
0

0
1

1
0

0
1

0
0

0
7

5
1

1
0

0
45

2.
22

10
1

4
0

0
0

0
5

1
0

0
4

1
0

0
0

0
0

0
1

0
0

0
0

0
4

0
0

0
47

8
12

51
0

93
.7

3
10

2
1

0
0

0
0

0
0

0
0

1
0

0
0

8
0

1
0

0
0

0
0

0
0

0
0

0
0

10
4

81
19

6
41

.3
3

S
um

70
0

56
4

27
21

73
72

31
30

92
3

18
1

52
4

38
10

40
61

30
5

38
81

1
41

15
9

42
2

56
8

12
73

11
9

14
7

78
20

74
43

13
18

57
59

93
68

2
10

6
36

,6
27

PA
(%

)
77

.7
1

37
.5

0
0.

00
38

.5
9

71
.3

4
70

.4
8

5.
09

0.
00

1.
15

29
.6

1
38

.0
7

11
.4

8
0.

00
80

.5
2

51
.2

2
40

.8
8

21
.3

3
3.

35
39

.1
2

3.
36

8.
84

20
.5

1
73

.7
7

62
.6

9
70

.2
7

6.
78

1.
08

70
.0

9
76

.4
2

52
.7

6

N
ot

e:
N

um
be

rs
of

co
rr

ec
tly

cl
as

si
fi

ed
te

st
in

g
sa

m
pl

es
ar

e
in

bo
ld

.

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



2636 P. Gong et al.

Legend
Disagree Agree Uncertain

Figure 12. Test sample distributions based on the SVM classification algorithm. Red, wrongly
classified; green, correctly classified; yellow, unused uncertain samples.

Table 13. A summary of OAs by continents in four land-cover data products based on
self-collected testing samples that are labelled N and ‘certainty’ = 1 (N = 36,630).

SVM (%) RF (%) MLC (%) J4.8 (%)

Africa 69.54 64.32 57.28 62.28
Asia 67.49 62.21 55.73 59.89
Europe 62.03 56.40 49.84 53.37
North America 57.90 54.74 50.63 53.52
Oceania 58.87 52.92 51.78 50.88
South America 66.65 60.22 52.32 58.95
Global 64.89 59.83 53.88 57.88

Table 14. A summary of OAs by continents in four land-cover data products.

SVM (%) RF (%) MLC (%) J4.8 (%)

Africa 69.75 64.34 57.57 62.81
Asia 77.65 72.42 65.60 69.04
Europe 64.41 57.63 53.51 55.21
North America 65.44 61.78 56.44 61.33
Oceania 68.55 60.48 61.29 58.06
South America 69.27 63.00 57.73 60.45
Global 71.54 66.08 60.09 63.84

Note: Sample excluding N and large samples AND having high resolution data AND samples are pure
AND pure samples using self-collected testing samples (N = 8629).

50 countries, the SVM achieved the greatest OCA for 46 of them. The RF classifier was
the best performer in two countries, and J4.8 was the best performer for two other countries
(including ties).

Based on the SVM land-cover map, we ranked countries in terms of abundance for
each land-cover class. Among various classes, the rankings for forests, barren lands,
waterbodies, snow and ice, and croplands have higher levels of certainty due to their rela-
tively high level of test accuracies (Table 16). China has the greatest cropland area and bare
land area; Russia has the greatest forest area; Canada has the greatest water surface area
and area of snow and ice.
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Table 15. Overall classification accuracies of the top 50 countries with greatest land territories.

Country Area rank J4.8 (%) MLC (%) RF (%) SVM (%) Average (%)

Russia 1 54.76 52.78 57.78 62.93 57.06
Canada 2 58.90 54.71 60.69 63.52 59.46
United States of America 3 49.15 48.12 50.26 52.33 49.96
China 4 56.95 55.94 60.61 66.23 59.93
Brazil 5 58.57 49.94 59.45 65.48 58.36
Australia 6 47.61 49.45 49.88 55.90 50.71
India 7 49.49 44.95 52.40 56.06 50.73
Argentina 8 46.50 46.78 47.48 55.60 49.09
Kazakhstan 9 41.91 39.88 40.32 38.87 40.25
Democratic Republic of the

Congo
10 62.35 47.21 63.55 69.12 60.56

Algeria 11 93.02 86.82 94.57 96.90 92.83
Mexico 12 41.37 36.92 40.51 50.26 42.27
Saudi Arabia 13 91.65 88.52 93.74 97.08 92.75
Indonesia 14 65.48 52.51 68.41 78.24 66.16
Sudan 15 76.80 71.73 77.87 80.80 76.80
Libya 16 90.63 93.23 93.75 97.66 93.82
Iran 17 75.58 67.53 76.88 83.38 75.84
Mongolia 18 57.19 50.34 55.48 53.08 54.02
Peru 19 75.78 58.20 75.39 78.13 71.88
Chad 20 71.48 66.55 73.24 78.87 72.54
Mali 21 84.08 78.89 85.12 90.66 84.69
Angola 22 37.32 35.21 34.86 40.85 37.06
South Africa 23 37.09 39.74 37.75 43.05 39.40
Niger 24 85.92 84.48 87.73 91.70 87.45
Colombia 25 61.60 54.85 63.71 70.89 62.76
Ethiopia 26 43.97 41.25 43.58 48.25 44.26
Bolivia 27 68.24 60.09 70.39 74.68 68.35
Mauritania 28 88.40 83.20 89.60 91.60 88.20
Egypt 29 91.59 83.64 94.86 95.79 91.47
United Republic of Tanzania 30 36.45 39.72 39.25 46.26 40.42
Venezuela 31 59.90 56.44 64.36 72.28 63.24
Nigeria 32 42.99 39.72 44.86 51.87 44.86
Pakistan 33 62.79 53.95 66.05 69.30 63.02
Namibia 34 61.19 57.99 72.15 79.00 67.58
Mozambique 35 34.31 30.88 34.80 46.08 36.52
Turkey 36 44.80 47.96 47.51 50.23 47.62
Zambia 37 40.51 50.00 45.57 49.37 46.36
Chile 38 69.63 67.54 71.20 74.35 70.68
Myanmar 39 59.12 50.83 61.88 75.69 61.88
Afghanistan 40 70.50 64.03 71.94 75.54 70.50
France 41 58.05 51.69 56.55 59.55 56.46
South Sudan 42 26.40 19.20 34.40 29.60 27.40
Central African Republic 43 50.69 35.42 55.56 45.14 46.70
Ukraine 44 46.90 44.83 53.79 62.76 52.07
Madagascar 45 38.94 32.21 39.42 52.40 40.75
Kenya 46 37.09 31.13 36.42 41.72 36.59
Morocco 47 76.88 67.05 73.99 80.35 74.57
Botswana 48 60.71 35.71 67.86 75.00 59.82
Thailand 49 42.55 31.91 41.13 49.65 41.31
Spain 50 43.48 45.34 43.48 51.55 45.96

Note: The best accuracy is in bold.
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No data

Legend (OA-SVM)

<50%

50–60%

60–70%

70–80%

80–90%

>90%

Figure 13. Overall accuracy (SVM) distribution for all countries in the world.

Table 16. The top 10 countries with the greatest abundance of some major cover classes obtained
with the SVM.

Rank Croplands Area (km2) Forest Area (km2) Waterbodies Area (km2)

1 China 2.79E+06 Russia 6.61E+06 Canada 8.10E+05
2 United States

of America
2.42E+06 Brazil 4.70E+06 Russia 5.28E+05

3 India 1.98E+06 Canada 3.42E+06 China 3.41E+05
4 Russia 1.92E+06 United States

of America
3.14E+06 United States

of America
3.38E+05

5 Brazil 1.43E+06 China 1.71E+06 Brazil 1.62E+05
6 Kazakhstan 9.33E+05 Zaire 1.62E+06 Australia 7.22E+04
7 Argentina 7.69E+05 Indonesia 1.34E+06 Indonesia 6.94E+04
8 Canada 6.71E+05 India 8.02E+05 Chile 6.12E+04
9 Australia 6.27E+05 Peru 7.31E+05 India 6.04E+04
10 Mexico 5.55E+05 Colombia 6.68E+05 Tanzania 6.01E+04

Rank Bare lands Area (km2) Snow and ice Area (km2)

1 China 3.14E+06 Canada 7.73E+05
2 Algeria 2.16E+06 China 2.51E+05
3 Saudi Arabia 1.91E+06 Russia 2.37E+05
4 Australia 1.61E+06 United States

of America
1.89E+05

5 Sudan 1.59E+06 India 4.98E+04
6 United States

of America
1.58E+06 Pakistan 3.71E+04

7 Libya 1.56E+06 Chile 3.64E+04
8 Russia 1.40E+06 Kazakhstan 3.36E+04
9 Kazakhstan 1.37E+06 Afghanistan 1.55E+04
10 Canada 1.33E+06 Argentina 1.03E+04

Based on our test sample and the SVM results, we estimated the proportions of major
land-cover classes (Table 17). Since the test samples were carefully interpreted, the pro-
portion obtained from test samples should be closer to the reality. The percentage (adj.)
is the area coverage calculated for all the land areas including Antarctica and Greenland.
The small percentage of test samples identified as clouds was excluded in the percentage
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Table 17. Global proportions of land-cover categories based on the SVM-based classification
results and calculated from validation samples (proportion adjusted to include Antarctica and
Greenland as Snow and ice, and clouds areas were excluded and normalized).

SVM
Validation samples (Total

38,664)

Category Area Percentage Percentage (adj.) Percentage Percentage (adj.)

Croplands 7.77E+06 6.07 5.47 7.59 6.90
Crop + Bare land

crop. field
2.23E+07 17.44 15.71 12.66 11.51

Forest 3.73E+07 29.19 26.29 31.19 28.35
Grasslands 1.50E+07 11.72 10.56 14.71 13.37
Shrublands 1.24E+07 9.72 8.76 12.64 11.49
Waterbodies 3.95E+06 3.09 2.78 3.91 3.56
Impervious areas 2.41E+05 0.19 0.17 0.73 0.66
Bare lands 3.28E+07 25.62 23.08 18.17 16.51
Snow and ice 1.96E+06 1.53 12.60 2.15 12.81
Clouds 1.85E+06 1.45 − 1.91 −

(adj.) with a normalization process that takes the ratio between the total area of each land
cover (except the cloud) and the difference between the total land area and the cloud area.
At the global level, only the percentage (adj.) is a meaningful coverage indicator of various
land-cover types.

In an attempt to use the SVM land-cover map product in Jiangxi Province, China, which
is a mountainous area with 167,000 km2, an independent accuracy assessment was done
by ourselves with 350 randomly selected test samples collected by a third-party group of
researchers familiar with that region. The OA achieved was 65.1%. This is close to the OA
of 66.2% for China.

Figure 14 compares FAO national surveys conducted in 2009 for arable lands of the
top 50 countries the with the areas mapped with the SVM classifier (Figure 14(a)) or with
those estimated from the test samples (Figure 14(b)). The area estimated from test samples
is done by taking the product of the total area of a country and the proportion of samples
among the total test samples for a country. The FAO results were derived from country-
supplied statistics. FAO arable lands include land under temporary crops (double-cropped
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Figure 14. Comparison of arable lands between FAO survey and FROM-GLC.
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Figure 15. Comparison of forests areas between FAO survey and FROM-GLC.

areas are counted once), temporary meadows for mowing or for pasture, land under mar-
ket or kitchen gardens, and land temporarily fallow. Neither land abandoned as a result of
shifting cultivation nor permanent crops such as orchards and vineyards are included. This
closely matches our cropland category except that we treated temporary fallow land under
barren land and mowed meadows and cultivated pastures under grassland in consideration
of their land-cover types as observed from the satellite data. From Figure 15(a), it can be
seen that in general the SVM classification results are about 17% lower than the FAO sur-
vey and the goodness of fit has an R2 of 0.69. The greatest discrepancy is found for China,
India, and the USA. In the case of China, the FAO data give only 1.1 million km2, whereas
the SVM map results give 1.55 million km2. For India, the FAO data give 1.58 million km2,
whereas the SVM results only report 400,000 km2. The cropland for the USA is also sub-
stantially undermapped by the SVM. The FAO ranks the USA, India, Russia, China, and
Brazil as the top five countries with the greatest agricultural area while the rank order by
the SVM is China, the USA, Russia, Brazil, and India. Comparing the FAO data with the
cropland area estimated from the test samples, the slope of regression is close to 1 indicat-
ing a better general agreement at the global scale (Figure 15(b)). The R2 also increased to
0.75. However, a great discrepancy still exists when the results are compared country by
country. The order of the top five agricultural countries is China, Brazil, Russia, the USA,
and India. Reasons for the differences are out of the scope of this study.

Figure 15 compares FAO national surveys conducted in 2009 with forest areas mapped
with the SVM classifier or those estimated from the test samples for forest land. FAO
defined forest area as land under natural or planted stands of trees of at least 5 m height
in situ, whether productive or not, and excludes tree stands in agricultural production sys-
tems (for example, in fruit plantations and agroforestry systems) and trees in urban parks
and gardens. Our mapping results also excluded the agroforestry systems such as orchards
and vineyards but did not have an explicit requirement of 5 m height. Our definition of
forest is based on whether a clear stem is observable to distinguish between shrubs and
forest. The goodness of fit is much better here, both greater than 0.96. Despite not having
a minimum height limit, both the SVM classification results and the estimated forest area
from the test samples are 11–14% lower than the FAO survey results.

7. Discussions and perspectives

High-quality land-cover classification is determined by a number of factors (Gong and
Howarth 1990; Cihlar 2000; Foody 2002). They include classification scheme, quality of
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input variables for mapping, training samples, and classifiers used. Classification scheme is
often determined by the purpose of mapping and class separability of input variables. Input
variables, also referred to as features, are often solely composed of various bands of images
or their combinations and less often ancillary data layers such as elevation and climate data.
The common practice in global land-cover mapping is the use of multitemporal images that
are acquired in a specific year. These are difficult to obtain for medium resolution data.
Since Landsat data have only recently become freely accessible, we only managed to collect
a single coverage from images obtained in a multiannual span. While this is an obvious
shortcoming of this first attempt, its value is also obvious because compared to the 30–40%
classification errors the magnitude of land-cover change in different years can be negligible.
Despite this, more timely and consistent multitemporal data should be used to improve the
classification when they become available in the future as demonstrated in regional studies
(Potapov et al. 2012); or a combination of less frequently available medium resolution data
with more frequently available coarser resolution data should be implemented. Although we
have used tens of thousands of training samples and compared four different classification
algorithms, efforts reported here can only be considered as an initial attempt for global
land-cover mapping using medium resolution satellite imagery. We have only seen the tip
of the iceberg and a large amount of evaluation experiments need to be done in the future.

The level of image processing over the entire world could be standardized in the future.
For example, due to inconsistent formats among the 519 scenes collected from the Chinese
Satellite Ground Station, we did not carry out radiometric and topographic correction over
China. Additional efforts will be made to collect data that have been more professionally
processed for global land-cover mapping.

While the training and test databases may seem large, we consider what has been tested
in this study to be minimal. Reducing the number of validation points by half in China
and Europe, we experimented and found little change in accuracy values. It seems that at
the global scale, the total number of test samples may be adequate. However, the global
land-cover classification can definitely benefit from a greater number of, and more impor-
tantly representative, training samples. In our experiments, no matter how we augment the
samples, either by taking local neighbourhood pixels around the selected training sam-
ple location or by including a larger number of training sites in neighbourhood scenes,
the resulting accuracies seem to increase for most classes except impervious surfaces. With
this category, a 3 × 3 window used surrounding the training sample pixel location produced
better results than bigger window sizes.

There are a number of possibilities in experimentally determining the most effective
way to increase the training data-set size. Among the alternatives are the following.

(1) There are over 38,000 test samples. At least half of them could be used in training
without significantly impacting the accuracy assessment. We did some experiments
with the inclusion of one-third of the test samples randomly selected for training
and obtained an average increase of 8% in the OA. Because test samples were
prefixed by location and interpretation had to be done regardless of whether they
were pure pixels or mixed, the inclusion of a portion of the test samples increased
the representativeness of the training data that led to improved accuracy. Another
reason could be because those test samples were collected by another small group
of image interpreters who created an inevitable inconsistency in interpretation com-
pared to the training sample interpreters. This mixing of training and test samples
reduced the discrepancy between the training and test samples.
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(2) At higher latitudes, Landsat images have a large amount of overlap. Training sam-
ples in the overlapped portions could be pooled together to evaluate the potential
for accuracy improvement by increasing the number of training samples.

(3) The overlapped portions could also be used to evaluate a chain classification
strategy (Knorn et al. 2009), other signature expansions and adaptive learning tech-
niques (Olthof, Buston, and Fraser 2005; Tuia, Pasoli, and Emery 2011), or efficacy
of efficient image clustering to aid classification (Chen and Gong, submitted).

(4) Ongoing training sample collection and refinement. Although we have made
efforts to do two rounds of sample refinement, there are still some samples that
are either uncertain or lacking the evidential support by higher resolution data.
Innovative technologies for simultaneous collaborative sample identification by
multiple interpreters are needed to refine the existing training samples.

(5) Crowd sourcing and collaborative learning system development. Field work and
crowd-sourcing sample collection (e.g. http://www.geo-wiki.org) to augment the
training data should be used when possible. Lastly, training and test sample collec-
tion should be strengthened through international collaboration as has been done
by Taseichi et al. (2011).

One of the unique contributions of this research is the collection of a large number of
test samples. Because of the systematic unaligned nature of the test samples and scale
range (30–500 m), they could serve as a valuable resource for validating other classification
efforts in parts of the world other than Greenland and Antarctica.

Gathering training and test samples from the image to be classified has a large amount
of uncertainty (Powell et al. 2004). The use of ancillary data can help alleviate this prob-
lem. The GM and GA software packages were developed to facilitate the incorporation
of massive amounts of ancillary image data to global mapping projects. Spatialization of
other published studies on land-cover mapping could also aid in the synthesis of the global
knowledge base.

Similar to other global land-cover mapping efforts, this research also adopted a per-
pixel classification approach. Image segmentation was run on all scenes used in this study
with a fast watershed segmentation algorithm (Wang et al. 2010). Initial experiments were
done to mode-filter classification results in each segment as a postprocessing procedure.
While this post-process filtering method has improved the OA by approximately 3% for
the classification results derived by the RF classifier, we have not achieved improvement
in the SVM results. In depth analysis of the reasons is in progress. The next step would be
experimenting with object-based image classification approaches.

Figure 16 presents some selected and wrongly classified test samples from various
areas. Ten sample images were selected from the worst-classified scenes in the world.
From a first glimpse of the distribution, the red areas seem to not escape the spell of Jung
et al. (2006) and Herold et al. (2008) that heterogeneous land-cover areas would be poorly
classified. Except desert and tropical forest areas, all other land-cover types are poorly
classified. Indeed, as can be seen from the samples, typical confusions happened among
non-tropical natural vegetation classes: forests, shrubs, and grasslands. Additionally, con-
fusions occurred among low-density vegetation areas and bare lands. It seems that most of
the mistakes are constrained to the vicinity of our sample locations. We regard them as rea-
sonable due to the lack of spectral separability and the constraint of per-pixel classification.
However, sample image #3 in Central Asia where large tracts of natural grasslands were
classified as bare croplands is quite unacceptable. The reason could be partly due to spec-
tral confusion and partly due to the inadequate training samples used. This area along with
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ID
Landsat Bands 4/3/2

composites
Classified results (SVM) Classified results (RF)

1

(1) p051r003_7dt19990708
(2) Canada
(3) Lat/Lon: 
79.245166°/–90.722042°
(4) Ecoregion: high arctic 
tundra
Test sample: herbaceous 
tundra classified as bare 
field. Due to lack of high 
resolution image, 
uncertainty exists in 
judging the density of 
vegetation coverage. This 
is a reasonable confusion.

72 classified as 93 72 classified as 93

2

(1) l5131013_01320100715
(2) Russia
(3) Lat/Lon: 
67.327780°/117.874917°
(4) Ecoregion: East 
Siberian taiga
Test sample: shrubs 
classified as evergreen 
forest (SVM). Shrubs 
classified as river due to 
relief shadow. Based on the 
photo fund nearby, 
likely to be short evergreen 
forest. This is a reasonable 
confusion.

it is

40 classified as 22 40 classified as 63

Figure 16. Selected image samples from various part of the world where none of the classifiers
classified correctly the test samples. From red to green are the poorest- to best-classified scenes
in the central map. Indexed images are all taken from Google Earth with either screen cap-
tures of high-resolution satellite image snapshots or photographs taken in the field in the vicinity
of our test samples. Curves are based on an annual time series of EVIs derived from MODIS

D
ow

nl
oa

de
d 

by
 [

H
al

s-
N

as
en

-O
hr

en
-K

lin
ik

] 
at

 0
3:

46
 1

3 
A

pr
il 

20
16

 



2644 P. Gong et al.

3

(1) l5169025_02520090620
(2) Russia
(3) Lat/Lon: 
50.395167°/48.601947°
(4) Ecoregion: Pontic 
steppe
Test sample: natural 
grassland classified as bare 
cropland. This is a highly 
frequent mistake but 
spectrally difficult to 
distinguish.  Involving 
texture features or field 
shapes could help reduce 
this confusion. RF seems to 
perform better in this case.

32 classified as 94 32 classified as 94

4

(1) l5035029_02920100714
(2) USA
(3) Lat/Lon: 
44.863486°/–105.989086°
(4) Ecoregion: Northern 
short grasslands
Test sample: natural 
grassland classified as bare 
rock/gravel land. This is a 
frequent mistake due to low 
vegetation density and 
spectral mixing between 
grass and background soil. 

32 classified as 93 32 classified as 93

Figure 16. (Continued). data for the entire year of 2010. The horizontal axes are from day 1 to day
365 of 2010, while the vertical axes are from 0.0 to 1.0. The centre of black boxes in the sample
images mark the location of our test samples. The original image samples were displaying the near
infrared, red, and green TM bands in red, green, and blue through some sort of greyscale stretching.
The original classification results for the SVM and RF classifiers are shown in the same row with
the original image but in the second and third columns, respectively. Corresponding to the original
.
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5

(1) l5123030_03020100824
(2) China
(3) Lat/Lon:
43.480413°/117.045839°
(4) Ecoregion: Mongolian-
Manchurian grassland
Test sample: natural 
grassland classified as bare 
cropland.  This is a 
difficult situation to use 
spectral data alone.  RF 
seems to perform better 
here

32 classified as 93 32 classified as 93

6

(1) l5199032_03220090724
(2) Spain
(3) Lat/Lon:
39.751953°/–1.882153°
(4) Ecoregion: Iberian 
sclerophyllous and 
semi-deciduous forests
Test sample: evergreen 
forest classified as shrubs. 
Mediterranean trees are 
sparse, therefore causing 
confusions.  This could be 
improved by increasing 
training samples in this type 
of ecosystem.

22 classified as 40 22 classified as 40

Figure 16. (Continued). classification are the post-processed classification results through image
segmentation and majority vote. The codes under the classification results were for level 2 land-cover
types that can be found in Table 3.
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7

(1) p146r047_7dt20001024
(2) India
(3) Lat/Lon:
18.601120°/74.604309°
(4) Ecoregion: Deccan 
thorn scrub forests
Test sample: cropland 
classified as evergreen 
forest. This is a frequently 
made mistake in India.  
Cropland are mostly 
growing vegetable fields or 
fruit garden.

13 classified as 21 13 classified as 21

8

(1) l5176053_05320091128
(2) Sudan
(3) Lat/Lon: 
10.570158°/26.919921°
(4) Ecoregion: Sahelian 
Acacia savanna
Test sample: shrubs 
classified as bare 
rock/gravel land. This is in
a savanna area where
shrubs, grass, and sparsely 
growing trees are 
intermixed.  This 
confusion is reasonable.

40 classified as 93 40 classified as 93

Figure 16. (Continued).

Rocky Mountain areas in North America will be more thoroughly analysed and classified
in our subsequent intensive mapping campaign. In Figure 16, we present extracted classi-
fication examples obtained with both SVM and RF classifiers. It can be seen that among
the examples, the RF classifier tends to produce more diverse classification results than
the SVM classifier. The reason behind it will be investigated in subsequent studies. We also
displayed post-processed results through image segmentation. The post-processing that was
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9

(1) p094r077_7dt20000825
(2) Australia
(3)Lat/Lon:
–24.303039°/145.896405°
(4) Ecoregion: Mitchell 
grass downs
Test sample: shrub
classified as bare cropland. 
This is a typical low-density 
shrub and grassland 
situation.  Such confusion 
is spectrally difficult to 
distinguish but could be 
avoided using shape and 
texture features.

40 classified as 94 40 classified as 94

10

(1) p228r090_7dt20000108
(2) Argentina
(3) Lat/Lon:
–42.559772°/–66.860920°
(4) Ecoregion: Low Monte
test sample: shrub 
classified natural grassland. 
This could be avoided 
perhaps by collecting 
sufficient number of 
samples.

40 classified as 32

Croplands

Forest

Grasslands

Shrublands

Waterbodies

Legend

Impervious areas

Bare lands

Snow and ice

Clouds

Unclassified

40 classified as 32

Figure 16. (Continued).
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done based on segmentation with a scale set of 50 pixels (in general segments derived would
be at least 50 pixels in size) removes the ‘pepper and salt’ effects. The results are useful
to applications that are best met with polygon-based analysis (e.g. landscape ecological
studies and biodiversity studies).

The initial goal of China’s global land-cover mapping effort was to create a 30 m reso-
lution land-cover product to address the needs of land surface process modelling (Verburg,
Nevmann, and Nol 2011). Ge et al. (2007) subjected the regional atmospheric modelling
system (RAMS), a regional land surface process model in Eastern Africa, to a sensitivity
analysis with varying accuracies of land-cover data. They found when the accuracy of land-
cover data was greater than 80%, the climate parameters modelled by the RAMS showed
little sensitivity to the land-cover inputs. From this perspective, we are still 10–15% away
from a desirable accuracy of land-cover products in order to support land surface process
modelling efforts.

In this study, we only utilized six optical spectral bands. Spatial texture and tempo-
ral features have not been included. Ancillary data such as topography may also help
improve classification accuracies. In addition, classification algorithms should be further
tested. Since only classifiers were tested in this study, further improvement may be possible
by (1) increasing the training data set size by pooling more samples from neighbourhood
scenes; (2) allocating part of the test samples into the training; (3) pooling training data
from within a basin or eco-region (Olthof et al. 2005); or (4) making use of object-based
image analysis (Yu et al. 2006; Gamanya, de Maeyer, and deDapper 2007; Clinton et al.
2010).

Future efforts will be made to improve classification accuracies for croplands, shrubs,
grasslands and particularly impervious surfaces whose accuracies are unacceptably low
(Table 8). Although having accuracies around 20% is not uncommon in the land-cover
classification community (Couturier 2010; Frey and Smith 2007), the impervious surface is
poorly classified here with a barely 10.5% producer’s accuracy and 30.8% user’s accuracy.
From a land-cover perspective, both croplands and grasslands are grass dominated. It is
natural that they are heavily confused with each other. Morphologically and spectrally, all
croplands, grasslands, and shrubs are similar during the growing season. Their confusions
are also expected. While the vegetation is sparse, these classes are spectrally mixed with
bare lands. On the other extreme, impervious surfaces are spectrally similar to barren lands.
Nonetheless, shrublands and grasslands are heavily confused with forests and bare lands.
Vegetation height information is likely to help differentiate these confused classes from
forests and bare lands. Wetland and tundra were not considered as a level I class in this
study. They are highly variable in space and time. Sulla-Menashe et al. (2011) suggest
not considering wetland as a land-cover class as it is determined by the presence of water.
Wetland should be extracted using ancillary data such as terrain and geomorphological
data. Settlements and arid lands have been mapped globally with coarser resolution weather
satellite data (Schneider, Friedl, and Potere 2010; Minoru et al. 2012). For 30 m resolution
data, tundra should be classified with climate data. Both impervious surface and wetlands
should be extracted with specially designed single-class extraction algorithms.

8. Conclusions and perspectives

Global land-cover mapping is a challenging task from almost every aspect of remote sens-
ing, including data collection, geometric and atmospheric correction, mosaicking, feature
extraction, classification, and accuracy assessment. Although a tremendous amount of
research has been devoted to land-cover mapping with remotely sensed data, the present
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capability in producing accurate land-cover maps over large areas with computers is far
from satisfactory. A great number of image classification algorithms have been proposed
but there is no general agreement on the best performers. It has been generally believed
that not only do new algorithms need to be continuously developed (e.g. Xu et al. 2003; Yu
et al. 2006; Liu et al. 2008) but more efforts should also be made to integrate the strengths
of various classifiers (Clinton et al. 2009).

The initial results reported in this research for the first time compared four classification
algorithms over the same type of data for the entire world and have consistently produced
results in various parts of the world. The results have been placed in an open FTP site to
ensure free use and further improvement by others (data.ess.tsinghua.edu.cn). There is a
need for substantially more research in order to empirically determine geographic areas,
feature types, and parameter settings, where various classifiers are strongest.

The research produced two distinctive sets of samples: 91,433 training samples and
38,664 test samples. This is an important source of data for global land-cover mapping.
Because a majority of these samples were interpreted using ancillary high resolution
imagery viewable from Google Earth, the quality of these two sample sets have high cer-
tainty. In addition, over 77% of the training samples and 38% of the test samples are large
samples, greater than 500 m × 500 m in area. They are important references not only for
our own research but also for mapping with coarser resolution data.

The finer resolution global land-cover map developed in this study provides oppor-
tunities for a large number of exciting future research projects. Our current effort only
involved the spectral data in Landsat images. Future research could benefit from incorporat-
ing more features into the global land-cover classification (Franklin et al. 2011, Zurita-Milla
et al. 2011) including lidar data (Huang et al. 2009; Hall et al. 2011), multi angular data
(Selkowitz 2010), hyperspectral data (Xu and Gong 2007), and phenological data (Clark
et al. 2010; Jeganathan, Dash, and Atkinson 2010). Second, it would be useful to investi-
gate multitemporal land-cover classification using multiple Landsat images over the same
area (Liu et al. 2008). Since there have been a large number of land cover data collected at
the regional and local scales, they should be more comprehensively utilized to improve later
global land-cover mapping efforts. Finally, more efforts should be made to extract individ-
ual land-cover categories, including agricultural and wetland areas using more specialized
algorithms (e.g. Schneider et al. 2010; Zhong et al. 2011).
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