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Comparisons of snowmelt detected by microwave sensors
on the Shackleton Ice Shelf, East Antarctica

Lei Zheng and Chunxia Zhou

Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China

ABSTRACT ARTICLE HISTORY
Surface snowmelt is of great importance to the ice sheet’s mass Received 2 January 2019
and energy balance. Microwave sensors, including radiometer and Accepted 13 July 2019
scatterometer can be used to map snowmelt. Two new microwave

sensors, including the Advanced Microwave Scanning Radiometer

2 (AMSR2) and the Advanced Scatterometer (ASCAT), were com-

pared in terms of their behaviours in snowmelt detection on the

Shackleton Ice Shelf (SIS) in East Antarctica. Melt signals were

determined by identifying the sharp changes in AMSR2 brightness

temperature and ASCAT backscatter. The results suggest that the

SIS began to melt in December, melt area shrank quickly in

February after reaching the peak in January. Melt area mapped

by the two sensors agreed with each other on the SIS, however,

also shows local discrepancies in the places with complex terrains.

ASCAT failed to recognized melt signals in the regions with blue

ice and rock outcrops where extensive melt ponds were observed

based on Landsat 8 images. Snowmelt detected by radiometer

and scatterometer shows complementary nature, the combination

of multisource remote sensing images is expected to provide

a better view of the ice sheet surface melting conditions.

1. Introduction

The emergence of liquid water in snowpack can greatly decrease the surface albedo and
hence increase the snow temperature (Fraser et al. 2016). Heavy snowmelt may endan-
ger the ice shelves when meltwater fills and enlarge the crevasses, and even lead to their
break-ups (Scambos et al. 2000). So the monitoring of snowmelt is of great importance
in the study of the stability, mass and energy balance of polar ice sheets. In situ
measurements of snowmelt in the polar regions are limited because of the remoteness
and abominable weather conditions. Spaceborne microwave sensors can be used to
monitor freeze thaw cycles over the ice sheets due to their insensitivity to atmospheric
and illumination conditions (Ashcraft and Long 2006). Microwave emissivity and absorp-
tivity increase significantly even when the liquid water is only one percent in volume
(Hallikainen, Ulaby, and Abdelrazik 1986), leading to the sharp increases of brightness
temperature (T,) and decreases of backscattering coefficient (o°).

CONTACT Chunxia Zhou @ zhoucx@whu.edu.cn @ Chinese Antarctic Center of Surveying and Mapping, Wuhan
University, Wuhan 430079, China
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Radiometers and scatterometers have large spatial coverages and high temporal resolu-
tions which are able to monitor the quick changes in surface snowmelt. With a long time
series of T, measurements, radiometers can be used to study the snowmelt dynamics based
on the T, temporal variations (Tedesco, Abdalati, and Zwally 2007; McCabe, Chylek, and
Dubey 2011). Similar to the radiometers, scatterometers detect melt signals by recognizing
the rapid changes in ¢°. Thresholding methods determined snowmelt when T, or ¢°
increases or decreases to a certain value (Zheng et al. 2018; Kuipers Munneke et al. 2018).
Edge detection methods were also used to identify the transitions of freeze thaw cycles (Liu,
Wang, and Jezek 2005; Steiner and Tedesco 2014).

The responses of T,, and 0° to melt signals were found to vary with different liquid
water content and the depth of the melting layer. Previous studies have found differ-
ences in snowmelt derived by passive and active microwave sensors (Ashcraft and Long
2006; Liu, Wang, and Jezek 2006; Steiner and Tedesco 2014; Zheng, Zhou, and Liang
2019). To examine the reasons for the local discrepancies of melt signals derived from
radiometer and scatterometer, the Advanced Microwave Scanning Radiometer 2
(AMSR2) and Advanced Scatterometer (ASCAT) were compared in terms of their beha-
viours in snowmelt detection on the Shackleton Ice Shelf (SIS), East Antarctica.

2. Study area and data set
2.1. Study area

The SIS covers 33,820 km? in East Antarctica, hugging the coast for 384 km from 90° E to
105° E (Figure 1). Northcliffe, Denman and Scott Glacier flow into the sea via the SIS, the
speed of the ice flow can reach 1500 m year‘1 (Zwally et al. 2002; Urbini et al. 2010). As
the northernmost ice shelf in East Antarctica, SIS’s proximity to the continental shelf
allows the evaluation of its susceptibility in light of climate change (Urbini et al. 2010).

2.2. Data set

As a successor of the Advanced Microwave Scanning Radiometer — Earth Observing System
(AMSR-E), AMSR2 onboard the Global Change Observation Mission — Water ‘Shizuku’(GCOM-
W1) satellite was launched on 18 May 2012. From about 700 km above the Earth, AMSR2
obtains data over a 1450 km swath (Hihara, Kubota, and Okuro 2015). AMSR2 observes the
Antarctic in afternoon and midnight for the ascending and descending passes respectively.
The instantaneous field of view dimensions is approximately 7 km x 12 km at 36.5 GHz
AMSR2 Ka band vertically polarized Ty, used in this study were obtained from the Japan
Aerospace Exploration Agency with a sampling Interval of 10 km (Imaoka et al. 2010).

From about 817 km above the Earth, C band (5.2 GHz) ASCAT obtains data over a 1450 km
swath (Figa-Saldafia et al. 2002). The effective resolution of ASCAT backscatter measure-
ments is 12 km - 15 km in most areas. To improve the utility of the data set, the 4.45 km
Scatterometer Image Reconstruction (SIR) product have been developed by the National
Aeronautics and Space Administration (NASA) Scatterometer Climate Record Pathfinder
project (Long, Hardin, and Whiting 1993). The ASCAT SIR product was obtained from
Brigham Young University (Lindsley and Long 2010). The 10 km AMSR2 T,, were reprojected
and resampled to the same spatial resolution as the ASCAT (4.45 km).
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Figure 1. SIS and its location in the Antarctic. The Mosaic of Antarctica (MOA) coastlines (red line)
were obtained from National Snow and Ice Data Centre (NSIDC) (Scambos et al. 2007). Base maps
with coloured frames were the Sentinel 1 images from March to June in 2015 obtained from
European Space Agency (ESA) (Torres et al. 2012).

3. Methodology
3.1. AMSR2 and ASCAT snowmelt detection

Snowmelt causes shifts to high diurnal amplitude variations in 36.5 GHz vertically
polarized T, (DAV;®) (Apgar et al. 2007), especially for the transitions in freeze thaw
cycles (Zheng et al. 2018):

DAV\3/6 = Tg?VA - Tg?vo M

where T334, and T{Spstand for vertically polarized 36.5 GHz Ty, in ascending and
descendihg passes réspectively. Melt signals have been successfully detected when
the difference between the two passes exceeds 18 K (Monahan and Ramage 2010;
Semmens et al. 2013). Similarly, Tedesco (2007) determined melt signals on the
Greenland Ice Sheet when the vertically polarized 37.0 GHz diurnal amplitude Ty, varia-
tions of the Special Sensor Microwave Imager (SSM/I) exceeds 18 K. We set the same
threshold to detect snowmelt on the SIS based on DAV;®:

36
(t):{ 1,DAVES(r) > 18K o

0,DAV;S(t) < 18K
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where t is time, m(t) represents the daily freeze/thaw state with m = 1 indicating melting
and m = 0 indicating frozen.

Liquid water leads to significant decreases of 0° compared with the winter observa-
tions. For C band backscattering measurements, melt signals are determined when o° is
at least 3 dB lower than the winter measurements (Luckman et al. 2014):

[ 1,0°%(t) <0l  —3dB
m(t){ 0,0%(t) > 0§: —3dB 3

where oevm is the winter (June to August) mean o°. This thresholding method has been
successfully applied in the melt detection on the Larsen C Ice Shelf (Luckman et al.
2014). The actual scatterometer measurements are always noisy (Long, Hardin, and
Whiting 1993). The great fluctuations of ¢° in dry snow packs may lead to the mis-
identifications of melt signals. C band backscatter in dry snow zone is generally weak
and lower than - 14 dB due to the deep penetration (Arigony-Neto et al. 2009). For
a melting pixel, two conditions therefore should be satisfied in advance. Firstly, oJ,
should be greater than - 14 dB. Secondly, the minimum of winter o° should be 3 dB
greater than the minimum of summer (December to February) o°.

3.2. Melt pond detection

Melt ponds on the SIS were mapped to assist in the interpretation of local discrepancies
of snowmelt detected by AMSR2 and ASCAT. A modified normalized difference water
index adapted for ice (NDWI;..) proposed by Yang and Smith (2013) was used in melt
pond extraction based on Landsat 8 image:

NDWlice = (B —R)/(B +R) 4)

where B and R represent the blue and red bands respectively. Compared with the
classical NDWI index (i.e. the normalized ratio between green and near infrared bands),
NDWI;.. can enhance the spectral contrast between the dry snow/ice surfaces and water
bodies. Regions with slush/water will result in pixels with higher NDWI; values.
A threshold of 0.12 was used to distinguish water bodies over SIS according to Bell
et al. (2017).

4. Comparison of snowmelt

Daily snowmelt on the SIS was determined by AMSR T, and ASCAT o° time series
(Figure 2(a)). The SIS began to melt in December. After reaching the peak in the next
January, the melt area shrank quickly in February. The SIS became almost totally frozen
in late February. Daily melt area detected by AMSR2 and ASCAT was very close but show
great differences in the early and late melt season. Melt season can last for more than
3 months on the SIS (Figure 2(b)).

Cumulative melt area (i.e. the sum of daily melt area) detected by AMSR2 and ASCAT
was 2.24 x 10° km? and 2.01 x 10° km? respectively during 2014-2015. Melt area
mapped by the two sensors suggest that almost the whole SIS melted. Significant
local discrepancies were found along the grounding line. AMSR2 recognized much
more extensive melt area, snowmelt was found to expand towards the inland for
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Figure 2. Snowmelt detected by AMSR2 and ASCAT during 2014-2015. (a) Daily melt area. (b)
AMSR2 melting days. (c) ASCAT melting days. (d) Spatial distribution of the difference between
AMSR2 and ASCAT melting days. (e) Frequency of the difference between AMSR2 and ASCAT
melting days.

kilometres. The inner border of melt area mapped by ASCAT agreed well with the
grounding line except for the places where blue ice and rock outcrops located.
Melting days derived by AMSR2 and ASCAT agreed well in the most part of the
eastern SIS, however, showed great local discrepancies in the west part where ASCAT
derived melting days were significant more than that derived by AMSR2 (Figure 2(b—d)).
However, in the blue ice and rocky area, AMSR2 derived melting days were more than
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20 days, while no snowmelt was recognized by ASCAT. The bias and root mean square
deviation (RMSD) between the melting days derived by AMSR2 and ASCAT are 5.9 days
and 15.1 days respectively (Figure 2(e)).

5. Discussion

The Antarctic ice sheet surface is generally flat and homogeneous, but also shows
heterogeneities for a very limited area where snow dunes, blue ice and rock outcrops
are located. A large area of blue ice in the grounding zone of the SIS can be clearly seen
in the Landsat Image Mosaic of Antarctica (LIMA) image (Figure 3(a)). Moreover, rock
outcrops obtained from the Antarctic digital database (ADD) are found to distribute near
the blue ice (Fox, Paul, and Cooper 1994). Several small islands beneath the SIS result in
the rise of the ice surface (Figure 3(b)). Large surface slopes are found in the grounding
zone of the SIS. We compared melting days and slope along profile AC and DH (Figure
4). The corresponding satellite observations for point A — H are shown in Figure 5.
Melting days showed considerable variations along both profile AC and DH (Figure 4).
Both the two sensors did not detect snowmelt in the first 50 km of profile AC (point A).
Significant surface slope variations near the grounding line (50 km — 70 km) were accom-
panied by a sharp rise of melting days derived by both AMSR2 and ASCAT. Masson Island is
about 300 m higher than the adjacent snow surface, leading to the significant shorter melt
seasons. Generally, ASCAT recognized more melt signals than AMSR2 (point C). The large
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Figure 3. Surface features over the SIS. (a) Rock outcrops (brown areas) and islands (green areas)
obtained from the Antarctic digital database (ADD) and NSIDC. Red lines represent profiles shown in
Figure 4, A — H denote the locations of the points presented in Figures 4 and 5. Cyan and yellow
stars show the positions of the melt ponds in the regions with blue ice and rocks outcrops showed
in Figure 4 (c) - (f). (b) Map of slope generated by the Bamber Digital Elevation Model (DEM) was
obtained from NSIDC (Bamber, Gomez-Dans, and Griggs 2009).
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Figure 4. Surface slope (blue line), melting days derived from AMSR2 (green line) and ASCAT (black
line) along profile AC (a) and DH (b). (c) and (e) are the Landsat images that illustrate the melt ponds
in the regions with blue ice and rock outcrops respectively. (d) and (f) are the corresponding melt
ponds extraction. The Landsat 8 image was acquired on 13 January 2015 and obtained from the
United States Geological Survey (Roy et al. 2014).

penetration depth at C band making the ASCAT measurements sensitive to the remaining
subsurface liquid water after the refreezing of the surface in summer (Ashcraft and Long
2006). A recent study found that ASCAT can detect liquid water at depths of up to 0.75 m
(Bevan et al. 2018), while Ka band penetration depth in coarse grain snowpack (e.g. the
percolation zone) is less than 0.05 m (Guerreiro et al. 2016) and is even shallow when the
snowpack is melting. This also explains more extensive ASCAT derived melt area in late melt
season (Figure 2(a)). ASCAT derived melting days was less than that detected by AMSR2 in
the regions with surface fluctuations, such as the grounding zone and the Masson Island
(point B). Surface slope complicates the backscatter received by ASCAT in the Antarctic
(Fraser, Young, and Adams 2014; Fraser et al. 2016), and makes it challenging to detect
snowmelt.

The underlying surface is more complex along profile DH (Figure 4(b)). AMSR2
detected snowmelt since 40 km, however, no melt signals were recognized by ASCAT
until 120 km. A wide range of blue ice (point E) and rock outcrops (point F) are
distributed between these two points. Melt ponds always occur in the regions with
rock outcrop and blue ice due to the relatively lower surface albedo and enhanced
absorption of solar radiation compared with the snow surface (Zhou et al. 2019; Lenaerts
et al. 2016). This phenomenon was also found on SIS based on the Landsat 8 image
obtained on 13 January 2015 (Figure 4(c-f)). It is a significant limitation that ASCAT may
fail to recognize melt signals in blue ice areas because specular reflection dominates the
backscatter (Zhou et al. 2019). Rock outcrops are characterized by very stable back-
scatter in C band (Parajka et al. 2005). ASCAT backscatter from blue ice and rocky surface
both showed little change during melt season and failed to detect snowmelt (Figure 5).
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Figure 5. AMSR2 DAV\3,6 (green lines) and ASCAT o° (blue lines) during 2014-2015. (a) - (f) show the
comparisons for point A — H. The cyan and red lines represent the thresholds used for AMSR2 and
ASCAT snowmelt detection.

It is also difficult for radiometer to detect surface snowmelt in bare ice area (Mote and
Anderson 1995). Nevertheless, melt signals were still recognized by AMSR2 in the
regions with plenty of blue ice and rock outcrops (point E and F in Figure 5), possibly
due to the relatively coarse spatial resolution and shallower snowpack penetration
which allow the detection of snowmelt in subpixel.

As illustrated above, AMSR2 and ASCAT show different performances in snowmelt
detection in the regions with complex terrain, blue ice and rock outcrops due to the
differences in operating frequencies and imaging modes. Satellite acquisition time could
be another important reason for the differences in freeze/thaw retrievals because
melting and refreezing can occur at any time of the day (Zheng et al. 2018). Picard
and Fily (2006) found the diurnal Antarctic melt area variations are consistently near
sinusoidal. On average, AMSR2 observed the SIS on 14:49 + 17 minutes (a warm period)
and 23:33 £+ 17 minutes (a cold period) in ascending and descending passes respectively,
which can make full use of the DAV;® algorithm (Zheng et al. 2018). By contrast, the
ASCAT product achieves enhanced resolution by sacrificing temporal resolution. At
present, we are not able to validate the melt detection methods for two reasons: (1)
no reliable and continuous snow wetness measurements on the SIS are available, and (2)
significant differences can exist between in situ measurements and satellite estimations
due to the different spatial scales (i.e. representativeness errors) (Lyu et al. 2017).
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6. Conclusions

This study compares the snowmelt detected by the passive and active microwave sensors.
The SIS began to melt in December. After reaching the peak in the next January, melt area
shrank quickly in February. The SIS became almost totally frozen in late February. Melt area
detected by AMSR2 and ASCAT was consistent on most of the SIS, however, also showed
significant local discrepancies. Snowmelt detected by the two sensors differs in the regions
with complex terrain, blue ice and rock outcrops. There exist complementary natures of
radiometer and scatterometer in snowmelt detection. With the increase of microwave
sensors, further work will focus on the combination of different microwave sensors to
provide a better view of the surface snowmelt on the ice sheets. An automatic snowmelt
detection method based on multisource satellite data is already in progress.
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