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ARTICLE INFO ABSTRACT

Handling Editor: Alex McBratney The lack of detailed three-dimensional soil texture information largely restricts many applications in agriculture,
hydrology, climate, ecology and environment. This study predicted 90 m resolution spatial variations of sand, silt and
clay contents at a national extent across China and at multiple depths 0-5, 5-15, 15-30, 30-60, 60-100 and
100-200 cm. We used 4579 soil profiles collected from a national soil series inventory conducted recently and cur-
rently available environmental covariates. The covariates characterized environmental factors including climate,
parent materials, terrain, vegetation and soil conditions. We constructed random forest models and employed a
parallel computing strategy for the predictions of soil texture fractions based on its relationship with the environ-
mental factors. Quantile regression forest was used to estimate the uncertainty of the predictions. Results showed that
the predicted maps were much more accurate and detailed than the conventional linkage maps and the SoilGrids250m
product, and could well represent spatial variation of soil texture across China. The relative accuracy improvement
was around 245-370% relative to the linkage maps and 83-112% relative to the SoilGrids250m product with regard
to the R?, and it was around 24-26% and 14-19% respectively with regard to the RMSE. The wide range between 5%
lower and 95% upper prediction limits may suggest that there was a substantial room to improve current predictions.
Besides, we found that climate and terrain factors are major controllers for spatial patterns of soil texture in China. The
heat and water-driven physical and chemical weathering and wind-driven erosion processes primarily shape the
pattern of clay content. The terrain, wind and water-driven deposition, erosion and transportation sorting processes of
soil particles primarily shape the pattern of silt. The findings provide clues for modeling future soil evolution and for
national soil security management under the background of global and regional environmental changes.
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1. Introduction et al., 2009; Montanarella and Vargas, 2012; McBratney et al., 2014).

The GlobalSoilMap project was proposed in 2006 and officially laun-

Soil texture is an important soil property that controls most phy-
sical, chemical and biological processes in soils. It can influence soil
thermal capacity, permeability, water holding capacity and solute
movement which are closely associated with applications of climate,
ecological, hydrological modelling, smart agricultural management and
soil pollution control. It often has high spatial heterogeneity over re-
gions and landscapes in both lateral and vertical dimensions. Currently,
there is an increasing demand for detailed three-dimensional soil tex-
ture information in dealing with global and national issues such as
climate change, soil degradation, water resource shortage, environ-
mental pollution, agricultural and ecosystem sustainability (Sanchez

ched in 2009. Its aim is to make a new digital soil map of the world using
state-of-the-art technologies for soil mapping and predicting soil properties
at a 90 m resolution and six standard depth layers 0-5, 5-15, 15-30, 30-60,
60-100 and 100-200 cm (Arrouays et al., 2014). The soil attributes to be
mapped include sand, silt and clay contents, coarse fragments, bulk density,
organic carbon, pH, cation exchange capacity, available water capacity,
electrical conductivity and soil depth. Currently, only several countries have
attempted to create three-dimensional national soil information using di-
gital soil mapping methods at a fine resolution (Arrouays et al., 2017).
Adhikari et al. (2013) predicted spatial distribution of soil texture fractions
of Denmark at the six depth layers at 30 m resolution using the Cubist

Abbreviations: DEM, digital elevation model; TWI, topographic wetness index; ETM +, Enhanced Thematic Mapper Plus; MODIS, Moderate Resolution Imaging
Spectrometer; MAT, annual mean temperature; MAP, annual precipitation; NDVI, normalized difference vegetation index; NDWI, mean nomalized difference water
index; LST, land surface temperature; R2, coefficient of determination; RMSE, root mean square error; ME, mean error; CCC, concordance correlation coefficient; RI,

relative improvement; CV, coefficient of variation; SD, standard deviation
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Fig. 1. Spatial distribution of soil profiles sites used in the study.

AR N RO
[%] Sand 30-2300 2m "—o

Fig. 2. Ternary plot of the sand, silt and clay contents for horizon observations.

decision tree algorithm. With the same algorithm, Viscarra Rossel et al.
(2015) generated a set of 90 m resolution and Australia-wide maps of clay,
silt and sand contents at the six layers. Mulder et al. (2016a) made 90 m
resolution maps of the soil texture fractions across France. Padarian et al.
(2017) modeled 100 m resolution national maps of the fractions of Chile
using the classification and regression tree algorithm. Kempen et al. (2014)
mapped clay content of the Netherlands using regression-kriging method.
Ramcharan et al. (2018) generated complete coverage gridded predictions
at 100 m spatial resolution of sand and clay contents for the conterminous
United States. Besides, at global extent, Hengl et al. (2014) developed 1 km
resolution soil grids for the soil texture fractions using a three-dimensional
regression-kriging method. And they recently updated the maps to 250 m
resolution using an ensemble of random forest and gradient boosting
methods (Hengl et al., 2017a).

China has a large span in geographical extent, covering an area of 9.6
million km? Its soil landscapes are very diverse and complex. It is a
challenge to accurately predict soil spatial variations with a limited
number of soil survey sites across the country. So far, high-resolution and
three dimensional predictive soil mapping at a national extent has not yet
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Table 1
Environmental covariates for characterizing soil formative factors in the soil
texture prediction (s, soil; ¢, climate; o, organisms; r, relief; p, parent material).

Variable Description Factors  Resolution
MAT Annual mean temperature (°C) c 1 km
diurnalRange Mean diurnal range (°C) c 1 km
tempSeason Temperature seasonality (°C) c 1 km
tempMax Maximum temperature of warmest month ¢ 1 km
(9]
tempMin Minimum temperature of coldest month c 1 km
(9]
annualRange Temperature annual range (°C) c 1 km
MAP Annual precipitation (mm) c 1 km
precipSeason Precipitation standard deviation (mm) c 1 km
precipSummer  Precipitation of warmest quarter (mm) c 1 km
solarR Mean annual solar radiation (Jm~%yr™) ¢ 1 km
vaporPressure ~ Water vapor pressor (kpa) c 1 km
windS Wind speed (m/s) c 1 km
elevation Elevation above sea level (m) r 90 m
slope Slope gradient (%) r 90 m
asp2n Aspect angle distance from north (°) r 90 m
curpln Plan curvature r 90 m
curprf Profile curvature r 90 m
TWI topographic wetness index r 90 m
posOpen Positive terrain openness r 90 m
negOpen Negative terrain openness T 90 m
topoExp Topographic exposure to wind I, p 90 m
regolithick Regolith thickness s 90 m
Band5 Surface reflectance at shortwave infrared s 30 m
(1.55-1.75um)
Band7 Surface reflectance at shortwave infrared s, p 30 m
(2.08-2.35um)
clayi Clay mineral index S, p 30 m
NDWI Annual mean nomalized difference water s, ¢ 30 m
index
NDVI Mean NDVI during the growing season o, c 30 m
ndviSeason Standard deviation of NDVI over a year o, ¢c 250 m
LSTfm Mean daytime LST of Feb & Mar (°C) s, C 1 km
LSTam Mean daytime LST of Apr & May (°C) s, ¢ 1 km
LSTjj Mean daytime LST of Jun & Jul (°C) s, ¢ 1 km
LSTas Mean daytime LST of Aug & Sep (°C) s, ¢ 1 km
LSTon Mean daytime LST of Oct & Nov (°C) s, ¢ 1 km
Table 2

Statistical description of the splines-fitted sand, silt and clay percentages at
different depths based on the 4121 training soil profiles.

Depth (cm) Mean (%) SD (%) Ccv Skewness Kurtosis
Clay:

0-5 19.97 12.38 0.62 0.94 1.17
5-15 20.10 12.32 0.61 0.90 1.05
15-30 20.66 12.82 0.62 0.86 0.82
30-60 21.31 13.80 0.65 0.87 0.77
60-100 21.79 14.56 0.67 0.87 0.69
100-200 21.71 15.28 0.70 0.79 0.41
Silt:

0-5 41.98 19.50 0.46 —-0.22 —0.66
5-15 41.92 19.37 0.46 -0.21 —0.69
15-30 41.81 19.61 0.47 —-0.18 —-0.76
30-60 41.28 20.04 0.49 -0.10 —0.80
60-100 40.73 20.46 0.50 —-0.05 —-0.86
100-200 40.47 21.34 0.53 —-0.06 —-0.92
Sand:

0-5 38.02 24.65 0.65 0.68 —-0.36
5-15 37.92 24.56 0.65 0.69 -0.35
15-30 37.40 24.92 0.67 0.71 -0.39
30-60 37.33 25.58 0.69 0.70 —0.46
60-100 37.37 26.21 0.70 0.67 —-0.58
100-200 37.79 27.69 0.73 0.68 -0.69

been attempted although there were some studies in watershed and field
scales (Chen et al., 2013; Li et al., 2013; Liu et al., 2013, 2016; Yang
et al., 2017). Shangguan et al. (2012) developed 1 km resolution maps of
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Table 3
Mean and standard deviation of prediction performance of soil texture fractions
based on 30 repeats of 10-fold cross validation with the 4121 training soil
profiles.

Depth (cm)  R? cce RMSE ME

Clay:

0-5 0.45 (0.003) 0.60 (0.002) 9.23 (0.022) 0.22 (0.017)
5-15 0.46 (0.003) 0.61 (0.002) 9.06 (0.023) 0.21 (0.014)
15-30 0.46 (0.003) 0.61 (0.002) 9.44 (0.023) 0.23 (0.021)
30-60 0.46 (0.002) 0.61 (0.002) 10.18 (0.018) 0.25 (0.016)
60-100 0.43 (0.003) 0.59 (0.002) 10.97 (0.027) 0.27 (0.018)
100-200 0.43 (0.003) 0.59 (0.002) 11.53 (0.026) 0.25 (0.024)
Silt:

0-5 0.48 (0.002) 0.63 (0.002) 14.09 (0.030) —0.09 (0.025)
5-15 0.49 (0.003) 0.64 (0.002) 13.86 (0.031) —0.09 (0.026)
15-30 0.48 (0.003) 0.63 (0.002) 14.20 (0.032) —0.09 (0.020)
30-60 0.45 (0.003) 0.60 (0.002) 14.90 (0.035) —0.09 (0.020)
60-100 0.44 (0.003) 0.59 (0.002) 15.32 (0.033) —0.06 (0.028)
100-200 0.44 (0.003) 0.59 (0.002) 16.01 (0.033) —0.11 (0.031)
Sand:

0-5 0.49 (0.002) 0.64 (0.002) 17.54 (0.032) 0.28 (0.022)
5-15 0.50 (0.002) 0.65 (0.002) 17.35 (0.033) 0.29 (0.031)
15-30 0.48 (0.002) 0.63 (0.002) 17.91 (0.036) 0.34 (0.031)
30-60 0.46 (0.002) 0.61 (0.001) 18.80 (0.033) 0.38 (0.027)
60-100 0.45 (0.003) 0.60 (0.002) 19.52 (0.044) 0.41 (0.034)
100-200 0.45 (0.003) 0.61 (0.002) 20.46 (0.048) 0.54 (0.043)

R% coefficient of determination; CCC: concordance correlation coefficient;
RMSE: root mean square error; ME: mean error.

Table 4
Prediction interval coverage probability (PICP) for clay, silt and sand contents
and different depths based on the 458 random-held back soil profiles.

Depth (cm) Clay PICP % Silt PICP % Sand PICP %
0-5 90.8 89.4 91.3
5-15 90.2 91.3 90.8
15-30 90.3 90.3 88.8
30-60 88.9 88.2 90.6
60-100 89.1 90.3 90.8
100-200 89.8 90.7 91.9

sand, silt and clay contents of China at multiple depths (different from
those specified by the GlobalSoilMap project) through a conventional
linkage method which linked legacy soil profiles with polygons of
1:1,000,000 scale soil type map. The soil profiles were originated from
the Second National Soil Survey conducted three decades ago, which
lacked of accurate georeference due to unavailable GPS system at that
time. With the same legacy soil data, Chen et al. (2019) made a 90 re-
solution map of topsoil soil pH of China using random forest and gradient
boosting methods, and Liang et al. (2019) made a map of topsoil soil
organic matter content of China using the Cubist method.

Despite the efforts above, the gap between detailed and accurate soil
data demands and availability is still large. Our understanding on soil
variation over landscapes at horizontal and vertical dimensions is still
limited (Heuvelink and Webster, 2001; Stockmann et al., 2013; Phillips,
2016). Meanwhile, current digital soil mapping methods are not perfect
when applying them in large areas (Minasny and McBratney, 2010;
Mulder et al., 2016b; Hengl et al., 2017a; Tifafi et al., 2018).

Therefore, the objective of the study was to conduct high-resolution
and three-dimensional predictive mapping of soil texture across China,
and to reveal the controlling environmental factors and processes for
spatial pattern of soil texture at a national extent.

2. Material and methods
2.1. Soil data source

A total of 4579 soil profiles were used in this study (Fig. 1). They
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were obtained by a recent project of National Soil Series Survey and
Compilation of Soil Series of China conducted from 2009 to 2019
(Zhang et al., 2013). The soil reconnaissance survey sampled all typical
soil types according to Chinese Soil Taxonomy (Cooperative Research
Group on Chinese Soil Taxonomy, 2001), which are so-called central
concepts of all soil types down to soil series level. Typical soil profiles
representing main soil-landscapes were collected. The geographical
coordinates of each soil profile location were recorded with a GPS re-
ceiver. The soil pits were generally dug to a depth of 1.5-2 m or until a
lithic or paralithic contact. All soil profiles were divided vertically into
different pedological horizons according to specific profile morphology,
and soil samples were collected from each horizon. In laboratory,
samples were air-dried at room temperature and then passed through a
2 mm sieve. Basic soil properties including soil texture, soil organic
carbon, bulk density, pH, cation exchange capacity, total nitrogen, total
phosphorus, total potassium, available phosphorus and available po-
tassium were measured. Among them, soil texture fractions, namely
sand (2-0.05 mm), silt (0.05-0.002 mm) and clay (< 0.002 mm) per-
centages, were determined using the pipette method (Zhang and Gong,
2012; USDA-NRCS, 2004). Fig. 2 shows horizon observations of sand,
silt and clay content in a soil texture triangle.

Fig. 1 shows that the northwestern and southwestern parts had ob-
viously less soil profiles than other parts. The reasons had two aspects: one
was poor accessibility in the west and limited funding for the soil survey,
and another was relatively small soil spatial variation in the northwest.
The northwestern part is an arid region, where there are widespread gobi,
semi-deserts and deserts. The southwestern part is an alpine region
(mainly the Qinghai-Tibet Plateau), where there are many high-relief
mountains and extensive depopulated zones. The harsh environments and
underdeveloped road networks lead to poor accessibility in the two parts.
Out of all soil profiles, 458 (10%) were randomly selected as random-held
back evaluation samples. They were used for evaluating the results of this
study through comparisons with existing traditional soil texture maps and
the SoilGrids250 maps, and also evaluating the uncertainty estimation of
soil texture predictions. The remaining 4121 (90%) were used for model
training and 10-fold cross validation (Fig. 1).

2.2. Environmental covariates

The SCORPAN (soil, climate, organisms, topography, parent mate-
rial, age and space) concept (McBratney et al., 2003) provides a fra-
mework for the choice of environmental covariates. We selected the
covariates associated with the formation, accumulation and transpor-
tation processes of soil particles and also those can reflect spatial dif-
ference of soil texture. Redundant covariates with high Pearson corre-
lation coefficient values (i.e., 0.85) were removed in the selection.
Table 1 lists the covariates used for spatial prediction of the soil texture
fractions in this study. The climatic variables over 1970-2000 were
obtained from the WorldClim database at 1 km resolution (Hijmans
et al., 2005). Solar radiation reflects the intensity of solar heating on
land surface. Wind speed mainly reflects soil erosion and evapo-
transpiration. MAT reflects mean status of air temperature while
tempMAX and tempMin express two extreme status. DiurnalRange,
tempSeason and annualRange represent changes of air temperature at
diural, seasonal and annual scales. Primary and secondary terrain
variables were derived from a 90 m digital elevation model (DEM) of
the Shuttle Radar Topographic Mission (http://srtm.csi.cgiar.org/
srtmdata/) using the SAGA GIS tool (http://www.saga-gis.org). Surfi-
cial geology was partly represented by Landsat8 ETM +Band7 (short-
wave infrared at 2.08-2.35um) and clay mineral ratio (Band5/Band?7,
Drury, 1987). The Band7 designed for geologists has the potential to
detect surficial lithology and minerals. Vegetation conditions were re-
presented by a mean normalized difference vegetation index (NDVI)
derived from ETM + observations during the growing season of 2017
and a NDVI standard deviation from MODIS (Moderate Resolution
Imaging Spectrometer) observations over the same year. Land surface
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Fig. 3. The predicted maps of clay content at six depth intervals.

moisture conditions were represented by ETM+ shortwave infrared
Band5 and Band7 and a normalized difference water index (NDWI) of
the growing season (Gao, 1996). Land surface temperature conditions
were represented by a set of double-month averages (Feb & Mar, Apr &
May, Jun & Jul, Aug & Sep, Oct & Nov) of a time series of 8-day
composite MODIS land surface temperature (LST) observations during
the year of 2017 (http://modis.gsfc.nasa.gov). Regolith thickness
(Shangguan et al., 2017) was used as a covariate because it can largely
indicate the surface conditions of weathering and accumulation and
erosion or removal. All data layers of the covariates were resampled to
a raster cell size of 90 m.

2.3. Deriving sample data at predefined depths

For each profile of a soil texture fraction (sand, silt or clay per-
centages), we used equal-area quadratic splines to fit a continuous
depth function to original horizon sample data. The splines are a set of

local quadratic polynomials tied together with ‘knots’ located at hor-
izon boundaries. It goes through each horizon, maintaining the average
value of the soil attribute, and is linear between the horizons and
quadratic within the horizons giving a linear-quadratic smoothing
spline. The areas above and below the fitted curve in a horizon are
equal (Ponce-Hernandez et al., 1986; Malone et al., 2009). A spline-
smoothing parameter lamda (A\) controls the trade-off between fidelity
and roughness penalty. In this study, its default value of 0.1 was
adopted for the fittings of all soil texture fractions. From the fitted
spline, we derived the mean values of a soil texture fraction within the
predefined six standard depth layers 0-5, 5-15, 15-30, 30-60, 60-100
and 100-200 cm. The mean values were taken as the standardized
sample data for the following spatial prediction of soil texture. The
fittings were performed using the Spline Tool version 2.0 developed by
the team of Australian Collaborative Land Evaluation Program
(Jacquier and Seaton, 2012). The mathematical description of the
equal-area quadratic splines can be found in Bishop et al. (1999).
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Fig. 4. The predicted maps of silt content at six depth intervals.

2.4. Predicting spatial variation of soil texture and estimating uncertainty

Based on the 4121 training soil profile sites, an ensemble machine
learning algorithm, random forest (Breiman, 2001), was used to model
the relationships between each soil texture fraction (sand, silt or clay
percentage) and the environmental covariates at each depth interval.
The model training was performed separately for sand, silt and clay
percentages and depth by depth. This algorithm was chosen because it
can deal with complex soil-environmental relationships and reduces
overfitting problem of a single decision or regression tree model. It has
been proven to be an excellent machine learning method currently
available (Brungard et al., 2015; Hengl et al., 2015; Nussbaum et al.,
2018). It generates multiple classification and regression trees, and all
trees are grown to maximum size without pruning. Each tree is trained
based on a random subset of the sample data (with replacement). A
random subset of covariates is also chosen for the tree training. The use
of bootstrap sampling in model training allows the remaining (out-of-
bag) samples to be used for error estimation. Final predictions of

random forest are an average of the predictions of individual trees. The
algorithm also provides an estimation of relative importance of cov-
ariates based on the increase in mean square error (i.e., %IncMSE)
when a covariate is randomly permuted. The bigger the %IncMSE value
the more importance of the covariate is. There are four important
parameters: number of variables used to grow each tree (mtry), number
of trees to be grown in the forest (ntree), minimum number of terminal
nodes (nodesize) and proportion of samples taken in a single tree. The
mtry is related with the strength of each tree and correlations between
trees, and increasing it can increase the strength of each tree and cor-
relations between trees. The default values of the parameters are em-
pirical values which are chosen based on a number of (if not many) data
experiments with different datasets when developing the model (Liaw
and Wiener, 2002; Svetnik et al., 2003). Svetnik et al. (2003), Diaz-
Uriarte and de Andres (2006) and Grimm et al. (2008) suggested that
the default of mtry is often a good choice. In this study, we made trials
with three values of mtry: one third (default), one half and two third of
the total number of covariates, but found that they had no obvious
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Fig. 5. The predicted maps of sand content at six depth intervals.

differences in the prediction accuracy. The default values of mtry and
nodesize (i.e., 5) thus were used for all soil texture fractions and depths.
The parameter ntree does not really need to be fine-tuned, its default
value of 500 was used in this study because we tried different values
and found the default value is sufficient to yield stable results (see
supplement material). Then, with the spatially exhaustive environ-
mental covariates, the trained random forest model of each soil texture
fraction and depth interval was applied over space. We consequently
generated 90 resolution national map of sand, silt and clay content at
the depth layers 0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm.
Uncertainty representation is a crucial aspect of digital soil map-
ping (Arrouays et al., 2014). Digital soil mapping models are not only
expected to deliver accurate soil predictions at a given location but
their suitability to deliver maps should encompass ability to predict
how uncertain these predictions are (Vaysse and Lagacherie, 2017).
The uncertainties of the predicted maps of clay, silt and sand contents
were estimated using quantile regression forest (Vaysse and

Lagacherie, 2017). The estimation produced maps of 0.05 and 0.95
quantiles for each fraction and depth. That is to say, for every pixel
location of the study area and every depth, there were values of un-
certainty for the predictions of clay, silt and sand percentages re-
spectively.

The random forest modeling and mapping were implemented in
the open source R environment (R Core Team, 2016) with the
packages ‘randomForest’ (Liaw and Wiener, 2002), ‘quantregForest’
(Meinshausen and Schiesser, 2015), ‘rgdal’ (Keitt et al., 2009), ‘raster’
(Hijmans and van Etten, 2013), ‘ggplot2’ (Wickham et al., 2019), and
‘dismo’ (Hijmans et al., 2017). In addition, due to large mapping area
and fine resolution, the amount of data and computation are quite
large. For each fraction at each depth, prediction was performed on
almost 1.2 billion pixels. To improve computation efficiency, a par-
allel computing strategy was employed in data processing, which se-
parated the whole area into many tiles and run multiple-thread par-
allel computation.
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2.5. Evaluation criteria

2.5.1. Criteria for evaluating the soil texture predictions

Based on the 4121 training soil profiles, 10-fold cross validation was
used to evaluate the performance of the random forest method for each
soil texture fraction and depth interval. We used four measurements:
coefficient of determination (R?), Concordance Correlation Coefficient
(CCG; Lin, 1989), root mean square error (RMSE) and mean error (ME).
They were calculated as follows:

o1 T, (B —0)?
>, (0, -0y )
210,
g, + 0, +(0—P) )

1 n
RMSE = |= Y (B - 0)?
n E 3

1 n
ME = =30~ R)
n Z; @

where P; and O; are respectively the predicted and observed values of a
soil texture fraction at sample point i; n is the total number of sample
points; P and O are respectively the averages of the predicted and ob-
served values; o, and g, are the corresponding standard deviations; and
r is the correlation coefficient value between the predicted and ob-
served values. We performed 30 repeats of 10-fold cross validation and
calculated their values of mean and standard deviation of the mea-
surements.

On the other hand, based on the 458 random-held back evaluation
soil profiles, we compared our soil texture predictions with existing soil
texture maps. One is the 1 km resolution linkage maps made by
Shangguan et al. (2012) using the conventional linkage method. The
method linked texture values of legacy soil profiles with polygons of
1:1,000,000 scale soil type map, which was not predictive soil mapping.
Another is the 250 m resolution SoilGrids250m maps made by Hengl
et al. (2017a) using an ensemble of random forest and gradient boosting
methods and the same set of soil profiles in the extent of China. The
improvement of our predictions relative to a reference work was cal-
culated based on the R? and RMSE using the Egs. (5) and (6) respec-
tively:
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where RIp2and Rlysg are relative improvement of our predictions with
regard to R and RMSE respectively, RZ,, and RMSE,,,, are accuracy
measurements for our predictions, and Rfef and RMSE,,; are accuracy
measurements for a reference work.

2.5.2. Criteria for evaluating the uncertainty estimation of the predictions

Lagacherie et al. (2019) demonstrated that uncertainty estimation
could be itself highly uncertain, especially when using sparse soil da-
tasets. It is thus important to evaluate the performance of uncertainty
estimation. Based on the 458 random-held back soil profiles, prediction
interval coverage probability (PICP) was used for the evaluation. The
PICP is simply the proportion of observations at each depth that are
encapsulated by the corresponding prediction interval (Solomatine and
Shrestha, 2009; Malone et al., 2011). In this study, the predication in-
terval was estimated by the quantile regression forest models men-
tioned above. If the uncertainty estimates have been reasonably de-
fined, the PICP should result in an estimate of 90% for a 90% prediction
interval. In addition, the standard deviations of the accuracy mea-
surements (R%, RMSE and ME) derived from the 30 repeats of 10-fold
cross validation were also used to reflect, to some extent, stability of
uncertainty of the predictions.

3. Results and analysis
3.1. Statistical summary of soil texture samples

Table 2 lists statistical description of the splines-fitted sand, silt and
clay percentages at different depths based on the soil profiles. Overall,
mean silt and sand contents were remarkably higher than mean clay
content at every depth layer. Mean clay content slightly increased with
the increase of depth while both mean silt and sand contents slightly
decreased with the increase of depth. No matter what situation for the
vertical change of mean content, standard deviation (SD) of all three
fractions exhibited an increasing trend with the increase of depth. Sand
and clay contents had higher variability for all depth layers with the
coefficient of variation (CV) between 0.61 and 0.73, whereas silt con-
tent had lower variability with the CVs between 0.46 and 0.53.

3.2. Performance of model prediction and uncertainty estimation

Table 3 lists the mean and standard deviation of model prediction
accuracy indicators of the soil texture fractions based on 30 repeats of
10-fold cross validation with the 4121 training soil profiles. Overall, the
mean CCC values ranged from 0.59 to 0.65, indicating good agreement
between the predicted and observed values. The mean ME values were
very close to zero, suggesting overall unbiased predictions. The mean
R? values of the predictions of soil texture fractions at different depth
intervals were between 0.43 and 0.50. This indicates the models ex-
plained around 43-50% of soil texture variation present.

Specifically, sand and silt contents had slightly higher mean R
values than clay content, suggesting that sand and silt were slightly
more predictable than clay. For every fraction, the R? values slightly
decreased downward from the depth of 5 cm while the RMSE values
increased, exhibiting a vertical decline of predictability of soil texture.
The 5-15 cm depth interval had a better model performance than the
0-5 cm depth interval, with the higher R*> and lower RMSE values.

Table 4 lists the values of prediction interval coverage probability
(PICP) for clay, silt and sand contents and different depths, which were
calculated based on the 458 random-held back soil profiles. For a 90%
prediction interval, we would expect 90% of observations to fall within
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Fig. 7. Maps of lower and upper limits of 90% prediction interval of clay content for each depth.

the lower and upper prediction limits. It can be seen that all the frac-
tions achieved PICP values very close to 90%, suggesting that these
lower and upper prediction limits estimated by the quantile random
forest method were of an appropriate magnitude. That is to say, the
uncertainty estimations, to a large extent, were reliable. This can also
be indicated by the small values of standard deviation of overall pre-
diction accuracy indicators (R2, CCC, RMSE and ME) in Table 3.

3.3. Spatial patterns of the predictions and their uncertainty

Figs. 3, 4 and 5 show the predicted maps of clay, silt and sand contents
at different depths across China. Overall, clay content was predicted to be
low in the north and northwest but high in the south. The lowest occurred
in deserts of the northwest while the highest in the Yunnan-Guizhou
Plateau covered by the Quaternary red clay which is believed to be formed
in a more humid and warmer geological period but elevated with uplift of
the Qinghai-Tibet Plateau (Huang and Lu, 2019). The relative high clay
content occurred in some provinces (Hunan, Guangdong and Guangxi) in
the south and the low-lying lacustrine deposits areas mainly including the

Huaibei Plain of Anhui province and northern Songnen Plain of Hei-
longjiang province. Silt content was predicted to be high in the Loess
Plateau, Yellow River alluvial plain of Shandong province, Jiangsu Plain,
Yili valley of Xinjiang province, and eastern Songnen Plain. It was low in
the desert areas in the north and northwest. Loess deposition is widely
distributed in the country and thus there are considerable silt content in
soils. Sand content generally exhibited an opposite pattern to silt content,
i.e., high sand content corresponded to low silt content and vice versa. The
obvious exception was the southwestern part with relatively low sand
content and middle silt content due to high clay content. Sand content was
predicted to be high in the north and northwest of China but low in the
south. Within the south, most mountainous areas tended to have relatively
higher sand content than low relief areas. The highest content occurred in
desert areas in the northwest, followed by Gobi areas and western Qin-
ghai-Tibet Plateau, whereas the lowest occurred in the Loess Plateau,
Yellow River alluvial plain of Shandong province, Jiangsu Plain, and
northeastern Songnen Plain. Deserts occupy large areas in Xinjiang, Inner
Mongolia and Qinghai provinces, which are rich in sand content and poor
in silt and clay contents. The predicted soil texture patterns conformed
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well with what is known about their general characteristics and distribu-
tion of soils in China (Gong et al., 2014).

Fig. 6 shows a colour composite map of the three soil texture frac-
tions for the 0-5 cm depth layer. The northwest and north China is
dominated by sandy textured soils (red colours). The middle part, i.e.,
Yellow River watershed mainly including Loess Plateau and lower
reaches alluvial plains, is dominated by silty textured soils (green col-
ours). The south and some low-lying lacustrine deposits areas is
dominated by clay textured soils (blue colours). These can also be
evidenced by the soil texture triangle plot in Fig. 2.

Figs. 7, 8 and 9 show maps of the uncertainties in predictions of
clay, silt and sand contents for each depth. The uncertainty was ex-
pressed as lower and upper prediction limits at a 90% confidence in-
terval. The 5% lower and 95% upper prediction limits had a similar
spatial patterns with the mean predictions shown in Figs. 3-5, i.e.,
higher mean prediction values responded to higher values of lower and
upper limits. The range between 5% lower and 95% upper prediction
limits appeared rather wide for all three soil texture fractions, sug-
gesting that there is room to improve the current spatial predictions.
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(continued)
3.4. Comparison with the existing maps

Table 5 shows accuracy assessments of our soil texture predictions
and the conventional linkage maps from Shangguan et al. (2012) and
the SoilGrids250m from Hengl et al. (2017a) at five depth intervals
based on the 458 random-held back evaluation samples. Our predic-
tions had much higher R? values and lower RMSE values than these
existing soil texture maps for all the depths. The lowest accuracy was
found for the linkage maps, showing the advantage of digital soil
mapping over conventional linkage method. The remarkably lower
accuracy of SoilGrids250m than our predictions is not out of the ex-
pectation that global model building could be less accurate than na-
tional model building when focusing on a national extent. The differ-
ences in the R? values indicate that the improvement for clay content
was around 248% relative to the linkage maps and 92% relative to the
SoilGrids250m maps respectively. The improvement for silt content was
around 370% and 112% respectively, and that for sand content was
around 245% and 83% respectively. As far as RMSE is concerned, the
improvement for clay content was around 24% relative to the linkage
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Fig. 8. Maps of lower and upper limits of 90% prediction interval of silt content for each depth.

maps and 14% relative to the maps of the SoilGrids250m maps re-
spectively, that for silt content was around 26% and 19% respectively,
and that for sand content was around 26% and 17% respectively. Thus,
the predictions were much more accurate than the existing maps of soil
texture fractions.

There were obvious differences between our predicted maps and the
existing maps although they had a similar trend of spatial distribution.
Take silt content at 5-15 cm depth as an example (Fig. 10). The linkage
silt map looks fragmented and stepped. There are many abrupt changes
between patches on the map. The abrupt changes inherited the lim-
itations of original polygon-based soil type map and assumed that there
is no spatial variation of soil texture within a soil polygon and the
variation appears only at the boundaries of polygons. This was ob-
viously reflected in the upper right scatter plot in Fig. 6, where the
mapped silt content values were the same (within a polygon) but the
observed silt content values were very different. The assumption often
does not hold in reality. Although abrupt changes of soils over land-
scapes do exist, changes in soil properties generally occur in a gradual
and continuous way. The silt map of the SoilGrids250m did not well
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represent the desert areas in Xinjiang and Inner Mongolia provinces,
where the lowest silt content should occur. It also did not well represent
the Loess Plateau and the loess deposit areas in the northeast, where
relatively high silt content should occur. Another obvious problem of
the SoilGrids250m map is the condensed range of the predicted silt
content, i.e., overestimation for low silt content and underestimation
for high silt content. This can be seen from the SoilGrids250m silt map
and the corresponding scatter plot in the middle of Fig. 10, which may
be a result of smoothing effect from the averaging operations in en-
semble algorithms. Both random forest and gradient boosting both are
already ensemble models. The two models were ensembled again to
produce the SoilGrids250m map. The averaging operation thus was
actually performed three times in the mapping, leading to a relatively
serious smoothing effect on the resulting map. Hengl et al. (2017a) also
found the smoothing effect in the predictions of Tasmania and Cali-
fornia. Besides, there are remarkable difference in the level of spatial
detail between our predictions and the existing maps. Take clay content
at 5-15 cm depth as an example and focus on a 67 km X 46 km local
area situated in the Huangling county of Shanxi province, China
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(Fig. 11). From the map excerpt it can be seen that our clay map were
much more detailed than the existing clay maps over space. Thus, our
predictions better represented spatial variation of the soil texture
fractions across China than the existing maps.

3.5. Controlling factors of China soil texture patterns

Figs. 12, 13 and 14 show relative importance of the first 15 important
covariates used in the predictions of soil texture fractions at multiple
depths. In clay predictions, the importance of the covariates did not have
obvious changes with depth. Solar radiation, wind speed and Band5 were
the most important covariates for all depth. Temperature-related vari-
ables and regolith thickness were the second important covariates. It
appeared that changes of air temperature at diurnal and seasonal and
even annual scales became more important than its mean status with the
increase of depth. Terrain variables such as slope gradient, TWI and
elevation had relatively low importance, which play roles through con-
trolling local moisture and thermal conditions and mass redistribution
over landscapes. Relatively high solar radiation and temperature changes

11

and low moisture conditions in the north and northwest of China lead to
relatively strong physical weathering and weak chemical weathering in
soil forming process. This affects the production of secondary minerals,
plus severe wind erosion caused by high wind speed of this area, re-
sulting in relatively low clay content and high sand content. On the
contrary, relatively high mean temperature and moisture and low tem-
perature changes in the south lead to strong chemical weathering of
parent materials and consequently massive production of secondary clay
minerals, plus high vegetation cover of this area, resulting in relatively
high clay content. Thus, heat and water drive physical and chemical
weathering and wind drive erosion processes which primarily have
shaped the pattern of clay content of China.

In silt predictions, elevation, solar radiation and air temperature
seasonality were the most important covariates for almost all depths.
Other covariates except terrain variables and annual precipitation all
had some changes of relative importance with depth. Although these
changes, Band?7, slope gradient, wind speed and air temperature annual
range were the second important covariates. The following important
covariates include the air temperature max value, Band5, mean daytime
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Fig. 9. Maps of lower and upper limits of 90% prediction interval of sand content for each depth.

LST, annual precipitation, TWI and terrain wind effect. Obviously,
terrain was a major control for the silt distribution. The northwest wind
prevailing in winter weakens when encountering the obstruction of the
Qilian and Qinling Mountains. The mountain chain consists of a high
and rugged barrier extending from Gansu to Henan province. The
weakening results in massive deposits of dust carried by the wind in the
north-central China, contributing to the formation the Loess Plateau.
The dust is rich in silt content. In addition to the large-scale terrain
arrangements, local terrain features represented by elevation, slope
gradient and TWI to a large extent determine gravity and hydraulic
power conditions and thus the intensity of erosion, redistribution and
sorting processes of soil particles. Wind is an important control for the
silt distribution. Relative high wind speed in the north and northwest
lead to strong soil wind erosion and loss of fine soil particles. And the
variables of terrain wind effects to the winter wind from the dominant
northwest played a significant role in the silt predictions. Besides, the
importance of Band7, Band5, MAP and TWI indicate that water is also
an important control for the silt distribution. Relatively high moisture
and annual precipitation lead to strong water erosion, transportation
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and sorting of soil particles especially for the loess deposition areas. The
Yellow River runs through the Loess Plateau and carries large amount
of fine soil particles to plain areas of the lower reaches, forming a zone
of high silt content in the northwestern Shandong province. Thus, the
terrain, wind and water have driven deposition, erosion and transpor-
tation sorting processes of soil particles which have primarily shaped
the pattern of silt of China.

In sand predictions, solar radiation, wind speed, elevation, Band5
and Band7 were the most important covariates for almost all depths.
The changes and extremely high value of air temperature appeared to
be more important than its mean status, plus the importance of solar
radiation, indicating that physical weathering was an important process
for affecting the formation of sand distribution. Wind speed was as
important as in clay predictions. Annual mean precipitation became
much more important than that in both silt and clay predictions, plus
the importance of Band5 and Band7, indicating the importance of water
erosions. Although elevation was still important, slope gradient con-
tributed little below the depth of 30 cm. The elevation may primarily
exert its influence in gravity and water erosion which takes away fine
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Fig. 9. (continued)

particles and leaves coarse particles. This can be seen in the south
where most mountainous areas tended to have relatively higher sand
content than neighbouring low relief areas. Thus, heat has driven
physical weathering and wind, water and terrain have driven erosion
processes which have primarily shaped the pattern of sand distribution
in China.

4. Discussion
4.1. Comparison of contemporary digital soil mapping assessments

The R? values of the predictions of soil texture fractions at depths in
this study (0.43-0.50) was at the same level as the national three-di-
mensional soil texture mapping studies of Australia (0.39-0.53;
Viscarra Rossel et al., 2015), Denmark (0.26-0.55; Adhikari et al.,
2013) and United States (0.46-0.57; Ramcharan et al., 2018), but was
relatively better than that of France (0.19-0.44; Mulder et al., 2016a),
and much better than that of Chile (0-0.09; Padarian et al., 2017) al-
though their differences in soil landscapes, prediction methods and data
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conditions. Moreover, the R? values had a smaller range than other
studies, indicating a more steady predictive performance among dif-
ferent depths. The substantial unexplained variation can be attributed
to the limited number of sparse soil profiles sites, i.e., nearly one soil
profile site per 2000 km? on average in the study area. This may be not
enough to capture short-range spatial variation of soil texture as noted
by Arrouays et al. (2017).

The decline of prediction accuracy with the increase of depth was
consistent with quite a few studies of three-dimensional prediction of
soil properties (Minasny et al., 2006; Liu et al., 2013; Kempen et al.,
2014; Viscarra Rossel et al., 2015). This may be associated with the
increase of soil texture variability towards deep layers, which can also
be seen from the vertical changes of SD and CV values in Table 2.
Moreover, the covariates used in this study mainly characterize surface
environmental conditions and processes and have relatively weak re-
lationships with soil properties of deep layers. The 0-5 cm depth in-
terval often had a slightly worse model performance than the 5-15 cm
depth interval. One important reason may be the bias resulted from the
splines fitting on original soil horizons data. It is well known that if the
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Accuracy assessments of the soil texture predictions with the existing linkage maps from Shangguan et al. (2012) and the SoilGrids250m from Hengl et al. (2017a,b)

based on the 458 random-held back soil profiles.

Our predictions The linkage maps SoilGrids250m
Depth (cm) R? RMSE (%) ME (%) R? RMSE (%) ME (%) R? RMSE (%) ME (%)
Clay
0-5 0.43 9.17 0.38 0.13 12.05 —-0.31 0.23 10.71 1.81
5-15 0.44 9.21 0.21 0.13 12.09 -0.37 0.22 10.72 1.62
15-30 0.41 9.73 0.25 0.10 12.74 —-0.38 0.22 11.21 2.26
30-60 0.43 10.10 0.77 0.12 13.52 1.42 0.22 11.93 3.38
60-100 0.42 10.74 0.91 0.14 14.04 1.88 0.22 12.67 3.89
Silt
0-5 0.53 14.25 —0.68 0.10 20.01 —1.02 0.25 17.94 —-0.76
5-15 0.53 14.05 —0.55 0.11 19.58 -1.14 0.25 17.65 -0.39
15-30 0.50 14.38 —0.62 0.10 19.77 -1.25 0.23 17.83 —-0.95
30-60 0.46 15.37 —-0.20 0.11 19.98 —-1.45 0.22 18.46 -1.05
60-100 0.46 15.73 0.29 0.11 20.42 -1.25 0.22 19.06 -0.85
Sand
0-5 0.52 17.72 0.67 0.15 24.56 1.31 0.27 21.87 -1.07
5-15 0.53 17.46 0.67 0.15 24.30 1.53 0.27 21.58 -1.21
15-30 0.49 18.38 0.77 0.14 24.97 1.75 0.27 22.06 -1.23
30-60 0.45 19.78 -0.29 0.13 25.83 0.11 0.26 23.05 —2.26
60-100 0.46 19.89 -0.75 0.14 26.02 —0.55 0.27 23.52 —2.96

initial data are for horizons of topsoil e.g. 0-12 or 0-20 cm and if there
is a change in soil texture below, then the fitted spline curve of 0-5 cm
may be biased. The magnitude of the biases depends on the constrast
between topsoil horizons and subsoil ones (Arrouays et al., 2014;
Odgers et al., 2012). Another possible reason may be the exposure of
the very surface layer to complex external environments, which makes
it easier to be influenced by some random or disturbing factors such as
human activities.

4.2. Conventional linkage method and digital soil mapping

The linkage method is relatively simple and easy to operate. It only
needs a polygon-based soil type map and a dataset of soil samples, and
does not need intensive computation. But, the method has several
drawbacks. First, it is constrained by the scale of the soil type map. Due
to the lack of detailed soil type map in large extents, high resolution soil
properties maps often cannot be made. Second, it assumes that soil
property value is the same within a polygon and its variation only oc-
curs at polygon boundaries. This may not be consistent with the reality
of soil spatial variation over landscapes. The spatial misrepresentation
of soil property would be severe when the scale of soil type map is
small. Third, the process of selecting the linkage between polygons and
soil samples was to some extent arbitrary as mentioned in Shangguan
et al. (2012). Although these drawbacks, under the situations of lacking
soil property information of large extents such as national, continental
or global, the conventional linkage method would be useful for quick
production of usable maps. For example, Reynolds et al. (2000) made
the 10 km resolution global distributions of sand and clay fractions for
0-30 and 30-100 cm depth intervals through linking the Food Agri-
culture Organization (FAO) soil map of the world with global pedon
databases. And FAO et al. (2009) developed the widely used Harmo-
nized World Soil Database.

In comparison, digital soil mapping method involves relatively
complicated operations including characterizing soil formative en-
vironments, modeling soil and environmental relationships, and pre-
dicting soil variation over space. It usually needs soil samples, en-
vironmental covariates and an appropriate predictive model. It can
utilize rich environmental data such as digital elevation model based
terrain variables and remote sensing images to assist its mapping pro-
cess. With high spatial resolution of environmental datasets available
currently, we can conduct spatially detailed digital soil mapping to
represent the details of soil property variation. High resolution and
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large extent soil mapping usually needs the support of high perfor-
mance computing facility. Besides, digital soil mapping method can
often achieve relatively high mapping accuracy compared to the con-
ventional techniques. In addition, it is easy to evaluate the uncertianty
of soil property predictions. Thus, the digital soil mapping is a pro-
mising alternative to the conventional linkage method.

4.3. Some issues of large extent digital soil mapping

Previous digital soil mapping studies mainly focused on relatively
small extent with the purpose of developing and testing methods
(Moore et al., 1993; Robinson and Metternicht, 2006; Malone et al.,
2009; Arrouays et al., 2017). Studies in recent years have been ex-
tending to large extent such as national (Odgers et al., 2012; Grundy
et al., 2015; Viscarra Rossel et al., 2015; Mulder et al., 2016a; Chaney
et al., 2016; Chen et al., 2019), continental (Hengl et al., 2015, 2017b;
Ballabio et al., 2016) and global extents (Hengl et al., 2014, 2017a).
With the increase of spatial extent, more landscapes are usually in-
cluded. This leads to two aspects of changes. One aspect is that the
difference in field accessibility over the mapping extent of interest may
become obvious. For example, plains are often more accessible than
hilly or mountainous areas. Another aspect is that soil-landscape re-
lationship to be considered may become diverse and complex, with
relatively strong nonlinearity, spatial nonstationarity, and the in-
volvement of multiple factors. Arrouays et al. (2012) noted such com-
plexity in designing soil monitoring networks in large areas.

The first change makes it difficult to achieve a spatially even dis-
tribution of soil samples. Of course, most large extent mapping used
legacy soil samples to avoid new sampling but such legacy samples are
usually not distributed evenly over space. The spatially uneven dis-
tribution of samples is an issue for soil prediction modelling and its
cross validation (Richer-de-Forges et al., 2017, Hengl et al., 2017b). In
this study, the national soil survey did not use a statistical design, but
purposive or typical one. Although the coverage of almost all soil
landscapes across China, the samples were unevenly distributed over
space. The 10-fold cross validation for evaluating model performance
was based on the uneven distribution of samples. It used a way of
random selection to form a subset of samples for validation. The
random selection gives more importance to the local areas where
samples are dense, leading to relatively small number of validation
samples in the areas with sparse samples. This may result in a bias in
the evaluation and obtain a more optimistic accuracy. Brus et al. (2011)
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Fig. 10. Comparison of the silt prediction with the linkage maps from Shangguan et al. (2012) and the SoilGrids250m from Hengl et al. (2017a,b) at 5-15 cm depth

based on the 458 random-held back evaluation samples.

noted that the sample subset randomly selected from the samples of
non-probability sampling design will be biased, i.e., not a true re-
presentation of total population, and consequently the validation based
on the subset will provide biased estimates of model quality. Thus, the
results of the cross validation in this study only give an indication of the
true accuracy of the predictions. Richer-de-Forges et al. (2017) devel-
oped an evaluation procedure to take into account spatial configuration
of samples in evaluation. They provides a promising idea to reduce the
evaluation bias.

The second change poses a challenge for current digital soil map-
ping methodologies. Lagacherie and Voltz (2000) speculated that,
especially over large areas, predictive capabilities are limited because
relationships between soil properties and landscape attributes are
nonlinear or unknown. Minasny and McBratney (2010) noted that
knowledge and techniques for regional soil mapping may not be ap-
plicable at a global extent due to spatial variability of soil-landscape
relationships. Thus large extent soil mapping needs models that can
deal with the complex soil-landscape relationships. Such models
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themselves are often complex in model structure and algorithm. Mitran
et al. (2018) found that geographically weighted regression kriging
model had better predictive performance of surface total carbon stocks
than linear regression kriging model in two adjacent states in southern
India. The former model was more complex than the latter model be-
cause it took into account the spatial non-stationarity of the relation-
ships between soil carbon and environmental covariates. Keskin et al.
(2019) showed that random forest as ensemble method outperformed
other relatively simple methods such as classification and regression
trees for digital mapping of soil carbon fractions in Florida. It would be
helpful to explore more complicated (maybe also better) models but the
computational challenge arising therefrom needs to be considered.

In addition, although the model built in a large extent may be un-
biased for the whole extent, its prediction is often biased in local areas.
Mulder et al. (2016b) found that the global SoilGridsl1km product de-
veloped by Hengl et al. (2014) overestimated soil organic carbon con-
tent of France. Liang et al. (2019) also observed the overestimation for
soil organic matter content of China. Vitharana et al. (2019) observed
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Fig. 13. Relative importance (%IncMSE) of the covariates used in silt prediction.

the overestimation of total soil organic carbon stocks by SoilGrids250m
was 122% for the 0-30 cm layer and 209% for the 30-100 cm layer in
Sri Lanka. This is not surprising but indeed a problem that needs to be
addressed by digital soil mapping communities. This problem may in-
dicate that current soil prediction models are still not flexible enough to
deal with the complexity of soil-landscape relationships in large ex-
tents. Arrouays et al. (2017) highlighted that both top-down and
bottom-up approaches are necessary to enhance the quality of digital
soil maps and map the entire world. Hengl et al. (2017a) recommended
a strategy of merging local and global predictions. Padarian et al.
(2019) proposed a transfer learning method to localise a continental
soil vis-NIR calibration model for accurate local soil predictions, which
can be borrowed to digital soil mapping. Thus, new methodologies for
large extent digital soil mapping still need to be developed. From that,
the GlobalSoilMap project would greatly benefit.

4.4. Potential applications of high resolution national soil texture maps

The high resolution soil texture maps produced in this study have
many potential applications such as climate, ecological, hydrological
modelling, water resource management and soil pollution control. First,
the maps can be used for estimating important soil hydrological
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parameters including soil available water capacity, permanent wilting
point and saturated hydraulic conductivity through pedotransfer func-
tions (Shiri et al., 2017). As is well known, these parameters are highly
heterogeneous over space and their measurements at field or laboratory
are laborious and time-consuming, leading to a dearth of their spatial
information. High resolution maps of soil texture and hydrological
parameters are useful to model ecological and hydrological processes
and make scientific agricultural irrigation planning in consonance with
local soil conditions. Second, the maps can be used for estimating soil
erodibility K-value through empirical models (Liang et al., 2013). Soil
erosion is a severe problem of ecological environments in China. Ac-
cording to the Bulletin of First National Census for Water, the total area
of land affected by water and wind was estimated to be almost one third
of the territory of China (Ministry of Water Resources and National
Bureau of Statistics of China, 2013). High resolution map of the K-value
is key information for assessing the amount and risk of soil erosion and
guiding the construction of ecological environments. Third, soil pollu-
tion is currently a big issue of concern in China. The maps provide
critical soil spatial information for assessing the environmental risks
caused by pollutant leaching and developing solutions for soil pollution
remediation. Last, spatial uncertainty distribution of the maps can be
used for guiding further soil sampling design to improve the map
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quality because areas with high uncertainty are usually under re-

Fig. 14. Relative importance (%IncMSE) of the covariates used in sand prediction.

presented and need to collect new samples.

5. Conclusions

The study shows that the combination of machine learning techni-
ques with currently available high-resolution soil formative environ-
mental covariates can effectively predict spatial variation of soil texture
at a national extent and a detailed level. We provided the first version of
90 m resolution maps of soil texture fractions and their uncertainty
across China. It was much more accurate and detailed than the existing
soil texture maps and can well represent spatial variation of soil texture.
The predicted maps represent a contribution of China to the
GlobalSoilMap project, and provide critical soil information for water-
related applications. Besides, new methodologies still need to be ex-
plored for large extent digital soil mapping, from which many global
initiatives will greatly benefit.

In addition, we found that heat, water, wind and terrain were major
controlling factors for the spatial patterns of soil texture in China. The
heat and water have driven physical and chemical weathering and wind
have driven erosion processes which have primarily shaped the pattern
of clay content. The terrain, wind and water have driven deposition,
erosion and transportation sorting processes of soil particles which have
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primarily shaped the pattern of silt. Heat-driven physical weathering
and wind, water and terrain-driven erosion processes have primarily
shaped the patter of sand. The findings provide clues for developing
mechanistic soil evolution models to simulate spatiotemporal evolution
of soil texture at a national extent. The simulation can support national
soil management to ensure the soil is secured in the future. This is
particularly important under the background of increasing climate
changes and intensified human activities.
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