
1.  Introduction
Frozen ground is an important component of the cryosphere, which exerts strong influences on regional 
ecology, hydrology and infrastructure engineering (W. Wang et  al.,  2018; Westermann et  al.,  2015). The 
Qinghai-Tibet Plateau (QTP) is underlain by typical high-altitude permafrost region, which is undergo-
ing more dramatic climatic warming than its surrounding regions (Wang et al., 2019). A growing number 
of studies have reported the present status and predicted degradation of permafrost under various global 
warming scenarios (Guo & Wang, 2017; Pang et al, 2010, 2012; W. Wang et al., 2018; Xu, Wu, et al., 2017; 
Zhang and Wu, 2012a). The degradation of permafrost may trigger the release of organic carbon into the at-
mosphere (Chang et al., 2018; Cheng & Wu, 2007; Ran et al., 2018; Y. Wang et al., 2018; Wu, Xu et al., 2017). 
It is also a potential threat to engineering construction and maintenance. However, most of these studies are 
based on linear statistical models and equilibrium models, and mainly focused on identifying the extent of 
permafrost, while researches on the present and future change of ground thermal regimes (including: the 
mean annual ground temperature, [MAGT], and the active layer thickness, [ALT]) are relatively rare (Wang 
et al., 2019; Z. Zhang, Wu, et al., 2012). The changes of MAGT and ALT could affect the ecosystem of the 
QTP by altering the ground ice evolution, hydrological processes, vegetation dynamics and carbon cycling, 
etc. (Hu et al., 2020; Niu et al., 2019; Wu et al., 2016; M. Yang, Nelson, et al., 2010). Therefore, it is of great 
importance to investigate present and future changes of the MAGT and ALT in the permafrost region (Y. 
Qin et al., 2017; Zhang et al., 2018).

Permafrost is a thermally-defined subsurface phenomenon (Westermann et al., 2015). Satellite sensors could 
obtain limited surface information, and only portion of the microwave remote sensing could penetrate sev-
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eral centimeters underground (Michaelides et al., 2019; Qu et al., 2019; T. J. Zhao et al., 2011). In general, it 
is difficult to use remote sensing to directly obtain information on changes in the physical state of perma-
frost (C. Yang et al., 2019). The current researches on permafrost thermal regime are mostly focus on either 
in situ observing or modeling using atmospheric circulation models (Westermann et al.,  2015). Most of 
the existing modeling frameworks require ground-based measurements as model inputs, while the in situ 
observations of permafrost are relatively sparse and highly non-uniform in cold regions. The long-term and 
continuous in situ observation sites for permafrost on the QTP are mostly located along the Qinghai-Tibet 
Highway and Railway, and other regions are less well distributed (Hu et al., 2015; Y. Qin et al., 2017; Zheng 
et  al.,  2019). The absence of observation data would greatly weaken the accuracy of simulation results. 
Therefore, it is challenging to select reliable modeling approaches with limited data to obtain the occur-
rence of permafrost and its projection due to climate change.

At present, the simulation studies on the ALT and soil thermal state of the QTP fall into two categories, 
including equilibrium models and mechanistic transient models (Aalto et  al.,  2018; Y. Qin et  al.,  2017; 
Riseborough et al., 2008). The most commonly used equilibrium models include Stefan formula (Xu, Wu, 
et al., 2017; Zhang and Wu 2012a), Kudryavtsev formula (Pang et al., 2009; K. Wang et al., 2020), the N factor 
(Nan et al., 2012), and the Temperature at the Top of the Permafrost model (TTOP; Zou et al., 2017). The form 
of the equilibrium model is relatively simple and requires fewer driving data for input (Pang et al., 2009; 
Riseborough et al., 2008). However, this type of model tends to show poor portability. In contrast, mecha-
nistic transient models consider more details of the hydrothermal exchange processes between the atmos-
phere and ground. Examples of this model include the Community Land Model (B. Chen et al., 2017; Fang 
et al., 2016; Oleson et al., 2010), Noah (H. Chen et al., 2015; Gao et al., 2015), the Geomorphology-based 
Eco-hydrological Model (Zheng et al., 2019), the Simultaneous Heat and Water model (Guo et al., 2011; Y. 
Liu et al., 2013), and the CoupModel (Hu et al., 2013; W. Zhang, Wang, et al., 2012). Nevertheless, the pro-
cesses of these models are complex and often insufficiently account for the hydrothermal dynamics, with 
the understanding of the soil physical mechanisms increase, the parameterization processes will become 
more complex (Guo & Wang, 2016; Harris et al., 2009; Hu et al., 2015). In addition to the transient models 
mentioned above, in recent years, the fine-scale tightly coupled hydro-thermal modeling of permafrost 
has also made great progress (e.g., models like Advanced Terrestrial Simulator, Jafarov et  al.,  2018; and 
Saturated-Unsaturated Transport (SUTRA), Walvoord et al., 2018, etc.), These models are typically based 
on a multidimensional solution to address fully coupled surface/subsurface permafrost thermal hydrology, 
which have played an important role to study the permafrost of local scale and microtopography (Painter 
et al., 2016).

Physics-based mechanistic models are currently the popular methods to study the permafrost, and the sim-
ulation results can show high accuracy. However, even with significant improvements in computer tech-
nology and algorithm simulation (Westermann et al., 2016), the current modeling still exists a trade-off be-
tween modeling resolution and size of the geographical domain (Etzelmüller, 2013). Especially in the case 
of lack of data and insufficient computing resources, the extensive application of physics-based mechanistic 
models would be limited. Whereas, the combined statistical method with machine learning (ML) can make 
up these deficiencies. In recent years, their great power in permafrost modeling has been confirmed (Aalto 
et al., 2018; Chadburn et al., 2017; Xu, Zhang, et al., 2017). The main purpose of statistical and ML model 
is to identify the relationship between a dependent variable and one or more explanatory variables (Wheel-
er et al., 2013). They can easily explain environmental conditions related to topography and land cover, 
whereas these factors may be difficult to express with physical parameters (Etzelmüller, 2013). Due to the 
good coupling between air temperature (often characterized by mean annual air temperature or cumulative 
temperature sums) and ground thermal regime (Aalto et al., 2018; Chadburn et al., 2017), the subsurface 
(<10–20 m) soil thermal conditions respond well to climate change at the decadal scale (Aalto et al., 2018). 
In addition, precipitation type (e.g., snow, rain and, sleet) and local environmental predictors (e.g., topog-
raphy, underlying surface condition and, soil texture condition) have great impacts on soil hydrothermal 
dynamics and the surface radiation budget (Lee et al., 2013; Zhu et al., 2019).

Therefore, in this study, we employed statistical and ML methods to investigate the MAGT and ALT across 
the QTP. The objective is to verify the applicability of the combined method on the QTP and quantitative-
ly assess the present and future status of QTP permafrost. First, we identified the critical factors which 
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determining the occurrence of permafrost. Second, we used the combined modeling approaches integrated 
with field observation data, meteorological data and geospatial environmental predictors to calculate the 
present MAGT and ALT. Third, the present results were benchmarked against in situ measurements of ALT 
and MAGT. Finally, the optimal modeling framework was used to predict future MAGT and ALT forced by 
different RCPs. The projection of the MAGT and ALT can serve as a useful reference and provide important 
information for the study of climate change, hydrology, ecology, and, geohazards resulted from permafrost 
degradation on the QTP.

2.  Data and Methods
2.1.  Data Sources

2.1.1.  Ground Temperature Data

The MAGT is an important factor that reflects the thermal state of permafrost, and is defined as the ground 
temperature at the zero annual amplitude depth (ZAA; i.e., the depth at which the annual temperature var-
iation <0.1°C; D. Qin et al., 2016). Due to the harsh environment of the QTP, some boreholes are measured 
manually using a multimeter once each year (Y. Qin et al., 2017). Most MAGTs, however, are not easily 
accessible from the ZAA. In these cases, the temperature at or closest to 10 m below the ground surface 
was used (G. Liu et al., 2017; Nan et al., 2002). All disturbed measurement sites (e.g., sites submerged by 
the rising waters of a lake) were removed. Ultimately, 84 MAGT sites (Figure 1) were selected from both 
field station observations (Cryosphere Research Station on the QTP, Chinese Academy of Sciences, avail-
able at http://www.crs.ac.cn/) and the related literatures (Y. Qin et al., 2017; Q. Wang et al., 2017; Q. Wu 
et al., 2012). We selected the period from 2000 to 2015 as the reference period, and all observations were 
obtained during this period. Some sites were based on one year of observation, while others were based on 
the average of several years, from which we calculated the long-term average value.

2.1.2.  Active Layer Thickness Data

In order to better fit the ALT, we attempted to collect a large amount of observed data from relevant litera-
tures (Y. Qin et al., 2017; Q. Wang et al., 2017; Q. Wu et al., 2012). An additional portion of the active layer 
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Figure 1.  Location of the investigated regions and observation sites. Green dots and red triangles stand for the mean 
annual ground temperature (MAGT) and active layer thickness (ALT) monitoring sites, respectively. The black polygons 
depict the five typical regions.

http://www.crs.ac.cn/
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data came from field pit detection. A total of 77 ALT observation sites (Figure 1) were selected. The time 
node selection and disturbance data processing for ALT were the same as those used for the MAGT. Based 
on the distribution of MAGT and ALT observation sites, we divided them into five typical regions, the Wen-
quan typical region (WQIR), Xikunlun typical region (XKLIR), Gaize typical region (GZIR), Aerjin typical 
region (AEJIR), and Qinghai-Tibet Highway typical region (G109IR), which represent the permafrost re-
gions of the eastern, western, southern, northern, and central areas of the QTP, respectively.

2.1.3.  Meteorological Data

In order to obtain climate data for the reference periods (2000–2015), the China Meteorological Forcing 
Data set (CMFD; available at http://www.tpedatabase.cn/; He et al., 2020; K. Yang, He, et al., 2010;) with 
temporal and spatial resolutions of 3 h and 0.1° × 0.1°, respectively, was utilized in this study. The time 
scale of the data set covered the studying period. According to the study of He et al. (2020), the CMFD was 
established by merging Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation data, and TRMM 
precipitation data, as well as the regular meteorological observations made by the China Meteorological 
Administration. The accuracy of CMFD is between the observation data and the remote sensing data (K. 
Yang, He, et al., 2010), and it has been widely used due to its high reliability (T. Wang et al., 2019; Xu, Wu, 
et al., 2017; Xue et al., 2013).

In the study, we used air temperature and precipitation data from the CMFD to calculate the two key pre-
dictors, including the thawing indices (thawing degree days, TDD) and the freezing indices (freezing degree 
days, FDD), which play essential roles in the studies of the frozen ground. As useful indicators, they have 
been widely applied in the permafrost region to predict the ALT (Nelson et al., 1997; Peng et al., 2018; Shi-
klomanov & Nelson, 2002; T. Zhang et al., 2005) and permafrost distribution (Nelson & Outcalt, 1987). In 
addition, we also calculated the other two predictors, including the solid precipitation (i.e., precipitation 
with a temperature below 0°C, Sol_pre), and liquid precipitation (i.e., precipitation with a temperature 
above 0°C, Liq_pre).

For future conditions, the BCC-CSM 1.1 climate change modeling data was used (available at http://www.
worldclim.org/). It was downscaled GCMs data from CMIP5 (IPCC Fifth Assessment). BCC-CSM1.1 is the 
version 1.1 of the Beijing Climate Center Climate System Model, the coupling was realized using the flux 
coupler version five developed by the National Center for Atmosphere Research (NCAR; Wu et al., 2019). 
It was a fully coupled model with ocean, land surface, atmosphere, and sea-ice components, and was often 
used to simulate the response of global climate to rising greenhouse gas concentrations, the performance is 
satisfactory in China (Xin et al., 2018; Zhang & Wu, 2012b). In this study, we chose the monthly average air 
temperature and precipitation over the time period 2061–2080 under three Representative Concentration 
Pathways (RCPs): RCP2.6, RCP4.5, and RCP8.5 (Moss et al., 2010; Taylor et al., 2012). The four predictors 
(TDD, FDD, Sol_pre, and Liq_pre) were recalculated in the same way for each time period and RCP scenario.

2.1.4.  Geospatial Environmental Predictors

The geospatial environmental predictors were mainly derived from topographic data and regional envi-
ronmental data. The Shuttle Radar Topography Mission data for a 1-km spatial resolution digital elevation 
model (Reuter et al., 2007) were selected to calculate the predictors of elevation (Ele) and potential incoming 
solar radiation (PISR; McCune & Keon, 2002). Soil organic matter is also an important factor affecting the 
ALT of permafrost. Due to the low decomposition rate of organic matter, high soil organic carbon has been 
accumulated in the permafrost regions (Ping et al., 2008). The adiabatic properties of organic matter rela-
tive to minerals will reduce the heat exchange between ground and air (Molders & Romanovsky, 2006; D. 
J. Nicolsky et al., 2007; Paquin & Sushama, 2015). Moreover, the organic matter can also affect the thermal 
properties and the amount of unfrozen water of soil (D. Nicolsky et al., 2009; Romanovsky & Osterkamp, 
2000). In order to consider the influence of the regional organic matter content (Wu, Fang, et al., 2012), soil 
organic carbon content information (SOC, ton·ha−1) from global SoilGrids 1-km data (available at https://
soilgrids.org; Hengl et al., 2014) was also used in our prediction analysis. Finally, all of the data layers were 
resampled to the matching spatial resolution (0.1° × 0.1°) and cropped to the study area (QTP).
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2.1.5.  Glacier and Lake Data

The spatial distributions of the glaciers and lakes on the QTP were collected from the Second Glacier In-
ventory Data set of China and the Chinese Cryosphere Information System provided by the Cold and Arid 
Regions Science Data Center (http://westdc.westgis.ac.cn).

2.2.  Model Description

Statistical models are general methods in the study of geography. It is usually built on some theoretical 
assumptions, and the data need to obey or approximately conform to a specific spatial distribution before 
the model can obtain credible results. However, ML algorithm is a general approximation algorithm, which 
generally does not require theoretical assumptions. The spatial analysis algorithm based on ML does not 
need a prior knowledge but a set of training data to learn the patterns of the geoscience system (Lary 
et al., 2016). Based on the above characteristics, we chose 2 statistical models and 2 ML algorithms to fit 
the present and future MAGT and ALT in this paper. The generalized linear modeling (GLM) and the gen-
eralized additive modeling (GAM) are traditional statistical methods used to simulate the thermal regimes 
of permafrost (Nan et al., 2002; Z. Zhang, Wu, et al., 2012). And the 2 ML algorithms are the generalized 
boosting method (GBM) and random forest (RF). In this study, all the four models were executed based on 
the R software program. The detailed information and characteristics of the models are as follows:

2.2.1.  Generalized Linear Model

The GLM is an extension of a linear model that can deal with the nonlinear relationships between explan-
atory variables and response variables (Nelder & Wedderburn, 1972):

                0 1 1 2 2 ,i ig x x x x� (1)

where g(μ) is the link function connecting the estimated mean to the distribution of the response variable 
(here is MAGT and ALT), μ = E 1 2 3/ , , , , iy x x x x , E is the expected value, β0 is the intercept component, 
βi is the regression coefficient to be estimated, and xi is the predictor. For MAGT and ALT, GLM was based 
on first- and second-order polynomials and identity-link function.

2.2.2.  Generalized Additive Model

GAM is semi-parametric extensions of GLM that specify smoothing functions to fit nonlinear response 
curves to the data (Hastle & Tibshirani, 1986):

             0 1 1 2 2 ,i ig x f x f x f x� (2)

where g(μ) is the link function connecting the estimated mean to the distribution of the response variable 
(here is MAGT and ALT), μ = E 1 2 3/ , , , , iy x x x x , E is the expected value, β0 is the intercept component, 
fi is a smoothing function for each explanatory variable, and xi is the predictor. To associate the MAGT and 
ALT with environmental predictors, the maximum smoothing function was set to 3 which were subsequent-
ly optimized by the model fitting function.

2.2.3.  Generalized Boosting Method

The GBM (based on the R package dismo) is a sequential integration modeling method that combines a 
large number of iteratively fitted classification trees into a single model, using cross-validation (CV) meth-
ods to estimate the optimal number of trees, and thereby improving prediction accuracy (Elith et al., 2008). 
GBMs automatically incorporate interactions between predictors and are capable of modeling highly com-
plex nonlinear systems (Aalto et al., 2018). GBMs (with Gaussian-Markov error assumption) were fitted 
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using the GBM. step function, including the main parameters of the learning rate, tree complexity, bagging 
fraction, maximum number of trees, and others.

2.2.4.  Random Forest

Random forest (RF, implemented in the R package Random Forest) is a ML algorithm based on a classi-
fication tree, which forms a “forest” by generating a large ensemble of regression trees. The model uses a 
bootstrap sampling method to extract multiple samples from the original samples, conduct decision tree 
modeling for each sample, and then combine the prediction of multiple decision trees in order to obtain 
the final prediction result through a voting process. The model is characterized by strong applicability, 
effective avoidance of over-fitting and insensitivity to missing data and multivariate collinearity (Breiman 
et al., 2001; Hutengs & Vohland, 2016). It is an effective empirical approach in the nonlinear-regression 
systems and its superiority has been proved useful by a large number of applications in the earth system 
(Lary et al., 2016).

To study the effects of predictors on MAGT and ALT, our models were designed using the following 
specifications:

MAGT TDD FDD Sol pre Liq pre PISR SO� � � � � � � � � � � � � � � �f f f f f f1 2 3 4 5 6_ _ CC

Lon Lat Ele
� �

� � � � � � � � �f f f7 8 9 ,� (3)

ALT TDD FDD Sol pre Liq pre PISR SOC� � � � � � � � � � � � � � � �f f f f f f1 2 3 4 5 6_ _ �� �
� � � � � � � � �f f f7 8 9Lon Lat Ele .� (4)

The independent variables in these equations are same, while the corresponding fi (xi) in each equation 
is different. In order to fully consider the advantages and disadvantages of the above four models and to 
reduce the uncertainty, we used an ensemble approach. This method puts the average of the four models 
as the new results. The optimal model was determined by comparing the key parameters of the final five 
results. Model performance was assessed using a repeated cross-validation (CV) scheme. Based on a total of 
84 boreholes and 70 ALT observation sites, the models gave the simulated results after 10 times fitting pro-
cesses using a random sample of 90% of the observation data and verification processes using the remaining 
10%. After each CV run for all models, the predicted and observed values of MAGT and ALT were compared 
in the terms of the root-mean-square error (RMSE), mean difference (cf. bias), and R-squared (R2).

3.  Results
3.1.  Reliability Assessment of MAGT and ALT

The simulation results were compared with the in situ observation data using CV. A comparison of the five 
results (Figure 2) reveals that there was no significant bias between the simulated values and the available 
borehole data on the QTP, but the RMSE and R2 of the ensemble method imply that it was more reliable 
than the other four methods. The consistency between the measured and simulated MAGT at most sites for 
the five models was less than 1°C. Among these models, the ensemble method performed optimally, with a 
simulation accuracy for 80 sites of <1°C, which account for 95% of the total sites. It exhibited a strong pos-
itive correlation between the simulated and observed MAGT (R2 = 0.73, p < 0.001). Overall, the ensemble 
method (Figure 2e) displayed the highest accuracy among the models in forecasting the MAGT. For this 
reason, the ensemble model was selected to simulate the present MAGT and future trends.

Similarly, the simulated ALT results were compared with the in situ observation data using the same sta-
tistical method. For ALT, the best fitting result was RF (Figure 3d), which exhibited the highest R2 and the 
lowest RMSE values of 0.51 and 0.69 m, respectively. Although the GLM method exhibited a smaller bias, 
the difference between the two methods was not large. Overall, the validations for the five results did not 
differ significantly. Based on further comparison of Figures 2 and 3, it can be seen that the fitting accuracy 
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of MAGT was better than that of ALT, with R2 values of the corresponding optimal fitting results of 0.73 
and 0.51, respectively. This is due to the fact that the spatial heterogeneity of the ALT is larger than that of 
the MAGT on the QTP, and the ALT will fluctuate greatly during climate change within a short period (Cao 
et al., 2017).

We calculated the error distribution for five typical regions separately (Table 1). Overall, the distribution of 
RMSE and bias on the QTP was relatively uniform, with the exception of the RMSE in the AEJIR. The reason 
for this may be that there are relatively few observation sites in the northern part of the whole investigated 
regions, and the simulating accuracy has high sensitivity to single points and poor regional representation. 
In addition, permafrost along the G109 Highway is greatly affected by human activities, and there are more 
observation sites in this region. Compared with the error statistics of the entire QTP, the RMSE of MAGT in 
the G109IR was relatively small, while the RMSE of ALT was relatively large. Thus, we may conclude that 
MAGT is relatively less affected by human activities, while ALT is more affected by disturbance and displays 
great spatial heterogeneity. In terms of bias, the region with the largest bias was GZIR. The reason is that 
GZIR located in the transition zone between permafrost and seasonally frozen ground, and the accuracy of 
the results would be affected to some extent.
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Figure 2.  Observed versus simulated mean annual ground temperature (MAGT, represented by the green dots) for 84 borehole sites based on GLM (a), GAM 
(b), GBM (c), RF (d), and an ensemble method (e). The red dashed lines are the ±1°C intervals around the 1:1 line (in black solid line). GAM, generalized 
additive model; GBM, generalized boosting method; GLM, generalized linear model; RF, random forest.
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Figure 3.  Observed versus modeled active layer thickness (ALT, represent by the yellow dots) based on GLM (a), GAM (b), GBM (c), RF (d), and an ensemble 
method (e). The red dashed lines are the ±1 m interval around the 1:1 line (in black solid line). GAM, generalized additive model; GBM, generalized boosting 
method; GLM, generalized linear model; RF, random forest.

(WQIR) (XKLIR) (GZIR) (AEJIR) (G109IR) (QTP)

Region East West South North Central Entire

MAGT RMSE (°C) 0.60 0.56 0.61 0.73 0.45 0.53

Bias (°C) 0.025 0.06 −0.15 −0.14 −0.03 −0.02

ALT RMSE (m) 0.60 0.62 0.68 0.11 0.76 0.69

Bias (m) 0.24 0.06 −0.46 0.09 0.18 −0.11

AEJIR, Aerjin typical region; ALT, active layer thickness; GZIR, Gaize typical region; MAGT, mean annual ground 
temperature; G109IR, Qinghai-Tibet Highway typical region; QTP, Qinghai-Tibet Plateau; RMSE, root-mean-square 
error; WQIR, Wenquan typical region; XKLIR, Xikunlun typical region.

Table 1 
Model Error Statistics of the ALT and MAGT in Different Typical Regions
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3.2.  MAGT and ALT During the Reference Period

Using the collected borehole data, we fitted the meteorological factors and geographical environmental 
factors to obtain the MAGT distribution of the permafrost regions on the QTP (Figure 4). We extracted the 
MAGT of the QTP below 0°C as an average range of permafrost (H. Chen et al., 2015), which indicating 
suitable conditions for permafrost, with a total area of 1.04 × 106 km2 (excluding glaciers and lakes). Con-
sidering the heterogeneity and uncertainty of ground temperature on the QTP, the minimum permafrost 
extent is 0.8 × 106 km2 (the area within MAGT ≤ −0.5°C), and the maximum extent is 1.28 × 106 km2 (the 
area within MAGT ≤ +0.5°C). Compared with the pan-Arctic permafrost, the permafrost temperature on 
the QTP is relatively high (Obu et al., 2019). Nearly half of the permafrost temperature area on the QTP 
exceed −1.0°C and the average temperature is −1.35  ±  0.42°C. The permafrost temperature is not only 
affected by latitude, but also by altitude. As illustrated in Figure 4, the lower-temperature permafrost on 
the QTP generally occurs in high-altitude mountains, and the ground temperature gradually rises with 
decreasing altitude, with the lowest value distributes in the Kunlun Mountain and its surrounding regions. 
In general, the MAGT on the QTP was found to be higher in the southern region (GZIR) than that in the 
northern region (AEJIR), and higher in the eastern region (WQIR) than that in the western region (XKLIR).

Based on permafrost extent, the spatial distribution of the ALT for the entire QTP was obtained (Figure 5). 
The statistical results indicated that the average ALT is 2.3 ± 0.60 m on the QTP, and the ALT value of ∼90% 
of the permafrost region ranged from 1.6 to 3.0 m. Geographically, the ALT in the eastern part of the QTP 
is relatively thinner (generally no more than 2 m) with slight variations. The ALT along the Qinghai-Tibet 
Highway and in the central and western plateau is highly heterogeneous. The overall ALT pattern is thin in 
the mountains, thick on the plains, thin in the hinterlands, and thick along the periphery of the permafrost. 
The maximum value appears along the southern boundary of the permafrost and the surrounding sporadic 
permafrost (generally ≥ 3.2 m). In general, MAGT and ALT exhibit a consistent trend in spatial distribution, 
with a correlation coefficient of 0.44. The smaller value of MAGT corresponds to thinner ALTs.

3.3.  The Projection of MAGT and ALT

In view of a strong statistical rule of MAGT and ALT in climatic factors (e.g., TDD and FDD) and topograph-
ic factors (e.g., Lon, Lat, and Ele), most studies have begun to use similar statistical methods to investigate 
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Figure 4.  Spatial distribution of permafrost on the Qinghai-Tibet Plateau (QTP) based on the mean annual ground 
temperature (MAGT).
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the present and future development trends of the periglacial climate realm (Aalto et al, 2017, 2018; Koven 
et al., 2013; Zheng et al., 2019). In this study, the optimal fitting model for the present state was employed to 
forecast MAGT and ALT under different future climate scenarios. For ALT, the spatial domain was limited 
to the area with simulated MAGT ≤0°C during each associated period and/or RCP scenario.

Due to climate change, the permafrost temperature exhibits an obvious rising trend on the QTP. We simu-
lated the future change of permafrost on the QTP after half a century. The results revealed that the future 
changes of MAGT and ALT are predicted to be pronounced, but region-specific (Figure 6). The forecasted 
average MAGT over the QTP permafrost regions will increase from −1.35°C (present status) to −0.66°C by 
2061–2080 (RCP2.6) and to 0.25°C for RCP8.5 (Table 2). The ALT, however, was only predicted to increase 
from 2.3 m (2000–2015) to 2.7 m (2061–2080) for RCP8.5. The reason for the consistency or small change of 
the ALT is that, the section of the permafrost with a MAGT near 0°C is forecasted to degrade to seasonally 
frozen ground, and this part of the permafrost usually corresponds to a thicker active layer. Additionally, the 
uncertainties related to the forecasts of MAGT and ALT under different RCPs in the future were given. And, 
the uncertainties are characterized by the range of MAGT value and ALT value. As can be seen in Figure 7, 
even under the different RCPs scenarios, the fluctuation range of MAGT and ALT is basically the consistent.

Over the next half century, the near-surface permafrost areas are predicted to continue to decrease by 
0.13 × 106 km2 (12%), 0.42 × 106 km2 (40%), and 0.60 × 106 km2 (58%) on the QTP by 2070 (2061–2080), under 
the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The result is basically consistent with the projected 
change by Chang et al. (2018, Figure 8). Permafrost is in non-equilibrium under the influence of climate 
change, and there may be no permafrost that is driven by the current climate. In fact, it may be that permafrost 
is degrading, so the distribution range of the simulation results may be underestimated (Zhao & Sheng, 2019). 
The changes in MAGT and ALT are not only related to the changes in temperature and precipitation but also 
closely related to hydrothermal parameters and surface energy balance (Guo & Wang, 2016; Hu et al., 2019). 
Based on the existing observation data and improved soil physics, the estimated changes in previous studies 
are generally larger than that of actual change (Cheng et al., 2019; Lawrence et al., 2012; C. Wang et al., 2019).

4.  Discussion
In order to project the possible future changes of permafrost, we simulated MAGT and ALT changes under 
the present state and future scenarios based on statistical and ML methods. The results show that under dif-
ferent RCPs, significant degradation of the QTP permafrost may occur (e.g., MAGT rising and ALT thicken-
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Figure 5.  Distribution of the active layer thickness (ALT) on the permafrost regions of the Qinghai-Tibet Plateau 
(QTP).
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ing); in particular, under RCP8.5, more than half of the near-surface permafrost will disappear, and regional 
differences were observed. In this section, to further verify the feasibility of our results, we compared our 
simulated MAGT and ALT with those of previous studies and then analyzed the vulnerability of permafrost 
to climate change under the present state. Based on these findings, we proposed urgent action should be 
taken to adapt climate change. Finally, the model performance and potential sources of the uncertainty in 
this study were discussed.

4.1.  Comparisons with Previous Results

The most likely permafrost area on the QTP is 1.04 × 106 km2 (the region where MAGT <0°C; Figure 4), 
or about 45.4% of the total QTP land surface area. Our results were compared with the permafrost dis-
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Figure 6.  Forecast mean annual ground temperature (MAGT) and active layer thickness (ALT) across the study 
domains under different RCPs (RCP2.6 (a, b), RCP4.5 (c, d), and RCP8.5 (e, f)) for the 2070s (average of 2061–2080).
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tribution map of the QTP for the period 2003–2012 based on the TTOP 
model, which was basically consistent with the new permafrost area 
(1.06  ×  106  km2; Zou et  al.,  2017). The two results showed substantial 
consistency, with a kappa coefficient of 0.63 (Table  3). However, there 
were still certain spatial differences (Figure 9). These differences mainly 
occurred at the southern margin of the continuous permafrost and the 
islands of permafrost in the south eastern QTP.

For the results of MAGT and ALT, a similar study showed relatively 
large deviations at the hemispheric scale (the RMSEs of MAGT and ALT 
were 1.6°C and 0.89 m, respectively; Aalto et al., 2018). In their study, 
an interesting discovery was mentioned, for both MAGT and ALT: after 
considering the area north of 60°N, the uncertainty was greatly reduced. 
This is primarily due to the fact that the permafrost on the QTP is quite 
different from that of the pan-Arctic region. The QTP is the dominant by 
the high-altitude permafrost, while the pan-Arctic is mainly the high-lat-

itude permafrost. Compared with the pan-Arctic region, the active layer on the QTP is thicker, the ground 
temperature is higher, and the spatial heterogeneity is greater (Cao et al., 2017; D. J. Nicolsky et al., 2017; Y. 
Qin et al., 2017). Therefore, combining the QTP permafrost and the pan-Arctic permafrost hemispherically 
will inevitably reduce the accuracy of the results.

We further compared the simulated results of MAGT and ALT with previous studies on the QTP. Table 4 
summarizes the error statistics among different types of permafrost models (i.e., equilibrium model, tran-
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Present RCP2.6 RCP4.5 RCP8.5

2000–2015 2061–2080

MAGT (°C) −1.35 −0.66 −0.14 0.25

ALT (m) 2.3 2.5 2.5 2.7

Area (×106 km2) 1.04 0.91 0.62 0.44

Note. The statistics of mean annual ground temperatures (MAGT) in three 
scenarios (RCP2.6, RCP4.5, and RCP8.5) were based on the permafrost 
range under present status.
ALT, active layer thickness; MAGT, mean annual ground temperature; 
RCPs, Representative Concentration Pathway scenarios.

Table 2 
Key Characteristic Metrics of Permafrost Under Different RCPs

Figure 7.  The uncertainty related to the spatial forecasts of mean annual ground temperature (MAGT) and active layer 
thickness (ALT) in RCP 2.6(a), RCP4.5 (b), RCP8.5, and (c) scenarios. The uncertainty is quantified using a repeated 
(n = 1,000) bootstrap sampling procedure inside the study domain. The boxplots depict the mean, median, 1st, and 
3rd quartiles and range of variation over 1,000 predictions for modeling techniques. The blue and red coloured boxes 
represent the ranges of MAGT and ALT, respectively.
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sient model, and statistical model). We can find that for the R-value, our method combined of the statistical 
and ML has the similar accuracy with the transient model. Although the RMSE of ALT in our study is the 
largest among all models, the differences are not significant. Moreover, the RMSE of MAGT in our study 
shows relatively smaller error. Meanwhile, from the overall spatial distribution of the ALT, although there 
are some differences in the spatial details, the distribution pattern of our result is comparable with the pre-
sented recently (T. Wang et al., 2020; D. Zhao and Wu, 2019). In generally, our model can obtain a relatively 
higher simulation accuracy.

We qualitatively analyzed the main reasons for these differences as follows. First, there are differences in 
accuracy among different types of models, such as the equilibrium models and mechanistic transient mod-
els. Second, there is a slight gap between the research period and the data used for verification. Permafrost 
is often viewed as a product of long-term climate change, which is slowly changing (Zhang et al., 2007); this 
may also lead to differences between the results. Finally, the 0.1° resolution of our model cannot capture all 
of regional information on climate change, which may limit the model's ability to capture detailed changes 
in the permafrost to some extent, especially in the boundary of the permafrost region (Etzelmüller, 2013; 
Guo & Wang, 2016). Therefore, the ability to capture the permafrost edge information should be further 
improvement. Overall, by comparing with previous studies on the QTP, that our method is relatively simple 
and effective, and thus could be a useful tool to evaluate the permafrost conditions with a high accuracy on 
the QTP.

4.2.  Permafrost Vulnerability

According to Figure 4, the ground temperature of the entire QTP perma-
frost is relatively high. In order to analyze the vulnerability of the QTP per-
mafrost to climate warming, the permafrost region with MAGTs ranging 
from −0.5 to 0.5°C was extracted (Figure 10). According to the permafrost 
stability classification (Cheng & Wang, 1982), permafrost in this range is 
classified as unstable region. It can be observed that 0.49 × 106 km2 of the 
permafrost area over the QTP is in danger at present, which accounting 
for 37.3% of the maximum permafrost area. This unstable permafrost pri-
marily distributed in the transition region of permafrost and seasonally 
frozen ground.

As a result of the global warming and increased anthropogenic activity, 
the QTP has experienced an approximately threefold warming increase 
over the past 50 years (Wan et al., 2018). Under the influence of this ac-
celerated warming, the permafrost region adjacent to the seasonally fro-
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Figure 8.  Projections of the changes in permafrost area on the QTP under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 via 
7(a) surface frost index (SFI) and 7(b) Kudryavtsev method (KUD). The graph is derived from Chang et al. (2018). 
Shaded areas show the standard deviations across the CMIP5 models, the black lines show the equivalent present-
day area, and the gray dotted line represent the degraded area in 2070 (red dot) under different Representative 
Concentration Pathway scenarios (RCPs).

Area discrepancy (×106 km2) Percentage (%)

Both P 0.86 35.41

Result P and Zou SFG 0.18 7.41

Result SFG and Zou P 0.20 8.23

Both SFG 1.19 48.95

Total 2.43 100

Abbreviations: P, permafrost; QTP, Qinghai-Tibet Plateau; SFG, seasonally 
frozen ground.

Table 3 
Comparision between this study and previous research (Zou et al., 2017) 
on the QTP
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zen ground is becoming increasingly fragile (Y. Qin et al., 2017). This part of the permafrost is generally 
in the process of ice-water phase transformation. A comparison with Figure 6 reveals that this region is 
consistent with the areas in which permafrost will disappear under future RCPs, but it also greatly affected 
by the local ground ice content, underlying surface types, and other related factors (Nelson et al., 2001; Z. 
Yang, Qu, et al., 2010).

The Qinghai-Tibet Engineering Corridor (QTEC, the region that contains the Qinghai-Tibet Highway and 
Railway, pipelines, electric transmission lines, and so on) is an important conduit connecting mainland 
China and the QTP. Under the influence of intensifying global climate change and frequent human activ-
ities, the ecological environment along the QTEC is fragile, and the permafrost in the QTEC has degraded 
significantly and the alpine ecosystem is facing new challenges (Niu et al., 2018). Based on Figure 10, the 
statistical results show that 757 km of the QTEC crosses through the permafrost region (at its maximum 
extent), accounting for nearly 40% of its total length (from Xining to Lhasa). Of this, approximately half of 
the QTEC faces the risk of the permafrost disappearing, and the other half may experience varying degrees 
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Figure 9.  Spatial differences between our results (2000–2015) and those of Zou et al. (2017) Temperature at the Top of 
the Permafrost [TTOP] model in the period 2003-2012). P and SFG represent permafrost and seasonally frozen ground, 
respectively; result is the permafrost distribution of this study. The permafrost distribution is obtained from Zou 
et al. (2017). SFG, seasonally frozen ground.

Numerical model Time period RMSE R Source

MAGT (°C) Equilibrium model 2000–2016 1.85 0.20 Obu et al. (2019)

Transient model 2007–2010 0.31 0.93 X. Wu et al. (2018)

Statistical and ML 2000–2015 0.53 0.85 This study

ALT (m) Equilibrium model Before 2009 0.47 0.46 Pang et al. (2012)

Transient model 2007–2010 0.57 0.86 X. Wu et al. (2018)

Statistical and ML 2000–2015 0.69 0.71 This study

Note. Bold data represents the best result for each model.
ALT, active layer thickness; MAGT, mean annual ground temperature; ML, machine learning; RMSE, root-mean-
square error.

Table 4 
Compare the Statistical Errors Between Different Types of Models
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of permafrost degradation in the future. This will result in huge economic losses and threaten associated 
infrastructures along the QTEC.

Recent studies have shown that several cryosphere tipping points are dangerously close (IPCC, 2019), and 
the permafrost in the Arctic has begun to thaw irreversibly and release carbon dioxide and methane, but the 
inevitable effects could still be mitigated by reducing greenhouse gas emissions (Lenton et al., 2019). The 
stability and resilience of the QTP permafrost is in peril. We should take urgent action to reduce greenhouse 
gas emissions, and put them as the priority of the present and future work. In order to effectively mitigate 
the degradation of permafrost, all the emission reduction measures should be reflected in words even in 
actions.

4.3.  Model Performance and Uncertainty Analysis

Our study integrated field observation data, meteorological data, geospatial environmental predictors, and 
multiple statistical models to study MAGT and ALT changes in the present and future QTP permafrost 
regions. Based on the CV analysis, the reliability of both predictions displayed relatively low uncertainty. 
For MAGT, the benefits of using the ensemble modeling approach were obvious, that is, the average of the 
four methods yielded the best simulation result. For ALT, large errors still existed among the ensemble 
modeling approach after CV, which indicating that the method does not always produce the most reliable 
results. The simulation accuracy of ALT is lower than that of MAGT, and the result can only represent the 
general change trend of ALT. The main reason for this is that, the spatial heterogeneity of ALT on the QTP 
is large, with the change rate of ALT per unit (100 m2) reaching 80%, thus resulting in the relatively low R2 
values and large RMSEs (Cao et al., 2017). Additionally, our model predicts the equilibrium state of perma-
frost and does not consider the lag time associated with the formation and degradation of permafrost (Xu, 
Zhang, et al., 2017). Compared with previous studies, although our results show great reliability, there are 
still some uncertainties embedded in the predictions, including the measurement accuracy of the data, the 
equilibrium assumption in the statistical modeling and the influence of other factors (Aalto et al., 2018).

Due to the limitations of the observation data, we had to use one-year or multi-year averages to represent 
the present state and to fit the model. MAGT and ALT changed during this period, however, in particular, 
ALT changed greatly at the inter-annual scale. We did our best to collect datasets with MAGT and ALT, but 
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Figure 10.  Spatial distribution of the permafrost regions prone to degradation.
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the number of sample points used for training was still limited, and the model was still highly sensitive to 
single observations. To some extent, this also indicates that the number of observation sites on the QTP is 
too sparse to represent the present large spatial heterogeneity of the plateau.

When calculating the input factors of the model, in the future warming scenarios, the TDD and FDD were 
calculated based on the monthly mean air temperature instead of the daily mean air temperature. This ap-
proximate calculation method will bring some unavoidable errors, especially when the temperature is close 
to 0°C (Shi et al., 2019; Wu et al., 2011). Additionally, we simply take 0°C temperature as the critical temper-
ature threshold between solid precipitation and liquid precipitation, while, in most cases, snowfall events 
even occur in some regions on the QTP when the air temperature is >4°C, but not 0°C (J. Wang et al., 2016).

In this study, some key soil parameters, including soil texture, soil moisture content, and bulk density, were 
excluded from the analyses in the model due to missing data, which exerted strong influence on water and 
heat transfer in the active layer as well as the change in permafrost temperature (Du et al., 2020; Wu, Fang, 
et al., 2017). The PISR and SOC in permafrost region are not static. However, it was assumed to be the fixed 
value in our model. With the further research on the key predictors of the permafrost region, we will add 
more dynamic datasets to our model. In summary, we used statistical and ML models combined with easily 
accessible data to simulate the present and future dynamics of permafrost on the QTP. By comparison and 
verification, our model can obtain high precision results through a relatively simple calculation process.

5.  Conclusions
In this study, the method combined of statistical and ML was used to obtain the key permafrost metrics in 
both the present and a half-century in the future (2061–2080) on the QTP. Based on the comparison with 
in situ observation data and previous researches, we found that this method was reliable for simulating the 
changes in MAGT and ALT. We demonstrated the permafrost degradation from a quantitative perspective. 
Our results can provide a scientific basis for the study of climate change in permafrost. The main conclu-
sions are listed as follows:

1.	 �A combination method of statistical and ML models is efficient to capture the changes in the thermal 
state of the permafrost on the QTP

2.	 �The present (2000–2015) permafrost area on the QTP is approximate to be 1.04 × 106 km2. The average 
MAGT and ALT of the permafrost region amount to −1.35 ± 0.42ºC and 2.3 ± 0.60 m, respectively

3.	 �In the future (2061–2080), the maximum permafrost area may be reduced to 0.44 × 106 km2. The future 
changes of MAGT and ALT are forecast to be pronounced, but region-specific

4.	 �The unstable permafrost mainly distributed at the edge of the permafrost region, and approximately half 
permafrost in the QTEC will be at risk of disappearing in the future

Data Availability Statement
Data sets for this research are available at https://data.mendeley.com/datasets/hbptbpyw75/1.
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