当前浏览: 冰冻圈


南极McMurdo Dry Valleys 60m Sentinel-1/2/Landsat冰川表面流速遥感后处理产品(2015-2020)

南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。

2022-11-03

南极海冰密集度CMIP6预估数据集(2020-2100)

该数据为第六次国际耦合模式比较计划 (CMIP6)在中等排放场景(ssp245)下对2020年-2100年南极海冰密集度数据的模拟。对CMIP6的25个模式数据统一插值后进行集合平均。海冰密集度数据大小在0-1之间,数据时间范围从2020年1月至2100年12月,时间分辨率为月,空间范围为南纬45°以南,空间分辨率为1°×1°。该数据提供了中等排放情景下,南极海冰的的状态和演变,可为南极未来变化等研究提供参考。

2022-11-02

南极中山站-Dome断面雪冰和冰芯(1990-2017)金属元素浓度数据集

基于中国第33次南极科学考察,在东南极中山站至Dome A断面上获取的雪冰金属元素浓度时空分布数据集,主要包括:1、距离中山站202公里处获取的一支浅冰芯,冰芯涵盖时间长度为1990年至2017年,分辨率为年,包括金属元素铁以及氢氧同位素等数据。2、沿着东南极中山站-Dome A断面,每个10公里采集一个样品,金属元素包括稀土元素和钡等元素。数据可用于研究自然源和人类活动对南极雪冰的污染和贡献等。

2022-10-26

印度河水资源时空分布数据集(1998-2017)

本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。

2022-10-23

格陵兰岛Petermann冰川崩解事件观测(2017)

海冰的减少和表面融水的增加,可能诱发冰流加速和锋面塌陷,对格陵兰冰架的稳定性有重大影响。然而,由于稀少的遥感观测,快速崩解之前的详细冰动态前兆和驱动因素仍然不清楚。我们通过联合使用高时空分辨率的遥感观测和冰流模型,对格陵兰岛北部Petermann冰川2017年7月26日崩解事件前的水文和运动学前兆进行了全面调查。2017年7月期间的冰流速度场的时间序列是通过Sentinel-2的观测来检索的,采样间隔为次周。冰流速度在7月26日(崩解前一天)迅速达到30米/天,这大约是平均冰川速度的10倍。

2022-10-22

北极多年冻土变化生态调节价值数据集(1982–2015)

1982-2015年北极多年冻土变化生态调节价值数据集,时间分辨率为1982、2015两期以及两期变化率,覆盖范围为整个环北极苔原区,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北极多年冻土对生态系统的调节服务价值,单价参考了剔除降水和雪水当量后的活动层厚度与NDVI变化相关性(0.35)及其草地生态系统服务价值(苔原生态系统服务单价以1/3草地生态系统服务价值为标准)。

2022-10-20

青藏高原五道梁地区多年冻土活动层厚度数据产品(2017-2020)

基于SBAS-InSAR技术获取的地表季节性形变以及基于变分模态分解校正后的ERA5-Land时空多层土壤湿度数据反演青藏高原五道梁多年冻土区域的活动层厚度,数据时间范围为2017-2020年,空间分辨率为1km。该数据产品可用于研究青藏高原多年冻土区域活动层厚度变化以及分析其与气候变化以及水循环、能量循环的相互作用关系,对于了解多年冻土退化状况、高原环境演化以及冻土退化对生态和气候的影响具有重要意义。

2022-10-19

南极重点流域表面高程变化数据(2010-2020)

南极冰盖21、22流域分布有松岛冰川、斯维特冰川等,是西南极融化最为剧烈的地区之一。本数据集首先利用Cryosat-2数据(2010年8月至2018年10月),在每个规则格网内,考虑地形项、季节波动、后向散射系数、波形前缘宽度及升降轨等因素建立平面方程,通过最小二乘回归计算格网内冰盖表面高程变化。另外,我们使用了ICESat-2数据(2018年10月至2020年12月),通过在每个规则格网内获取两个时期的卫星升降轨道交叉点处的高程差值,进而计算该时期内冰盖的表面高程变化。两个时期的面高程变化数据空间分辨率为5km×5km,文件格式为GeoTIFF,投影坐标为极地立体投影(EPSG 3031),并由所使用的卫星测高数据名称命名(即CryoSat-2、ICESat-2)。该数据可使用ArcMap、QGIS等软件打开。结果表明,该区域2010-2018年平均高程变化率为-0.34±0.08m/yr,属于融化剧烈地区。2018年10月-2020年11月年平均高程变化率为-0.38±0.06m/yr,相比于CryoSat-2计算结果该区域融化处于加剧状态。

2022-10-19

青藏工程走廊活动层厚度分布预测图(2015-2065)

青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。活动层厚度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:活动层厚度模拟误差小于50cm。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的活动层厚度,并预测了SSP2-4.5气候变化情景下未来活动层的厚度。

2022-09-05

过去200年南极海冰范围重建序列

(1)数据内容:过去200年南极区域海冰范围(最北边界)数据集;(2)数据来源及加工方法:该数据利用6条年分辨率的代用指标(冰芯MSA、积累率等),基于统计模型产生;(3)数据质量描述:年分辨率;包含区域:印度洋-西太平洋(50°–150°E, IndWPac),罗斯海 (160°E–140°W, RS),阿蒙森海(90°–140°W, AS),别林斯高晋海 (50°–90°W, BS),威德尔海 (50°W–20°E, WS);(4)可用于研究南极海冰的年代际演变特征。

2022-08-29