高分辨率冰芯孢粉记录能够指示季节性植被变化与气候指标的关系。本数据集对青藏高原作求普冰芯长32m的冰芯沉积物开展了高分辨率孢粉分析,获得了117个冰芯孢粉组合数据,所有数据为孢粉百分比数据,按照深度顺序排列。
2021-05-25
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
2021-05-20
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
2021-03-30
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月南极冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE-FO (2018年六月至今)。由于GRACE和GRACE-FO之间有一年左右数据间断,我们额外采用了由欧洲空间局ESA的Swarm星座GPS数据反演得到的重力场数据(2013年12月至2019年12月)。所采用GRACE重力场数据为德州大学奥斯丁空间研究中心(CSR)、德国地学研究中心(GFZ)、美国宇航局喷气推进实验室(JPL)以及俄亥俄州立大学(OSU)四家机构发布产品的加权平均模型。GRACE数据后处理包括:用SLR数据解算结果替换GRACE低阶重力场参数(degree-1, C20和C30),去条带滤波,300公里高斯平滑,ICE6-G_D(VM5a)GIA模型,信号泄露误差改正,椭球误差改正等。
2020-11-05
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
2020-07-28
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月格陵兰岛冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE Follow-On(GRACE-FO,2018年6月至今)。此外为了填补GRACE和GRACE-FO之间的数据中断,我们额外采用了由欧洲空间局Swarm三星星座的GNSS轨道摄动数据反演得到的重力场数据。数据格式为Matlab数据文件,冰盖质量变化转化为等效水高,表达在0.25°x0.25°格网上,时间分辨率为1个月。本数据集可用于近二十年格陵兰岛冰盖质量变化特征及其与全球气候变化之间关系的研究。
2020-05-26
第三极地区近期冰川变化因其对下游水资源供给的重要意义而成为周边各国政府关注的热点。第三极地区冰川表面高程变化数据产品基于获取于2000年的SRTM和2015年前后ASTER立体像对,在第三极地区范围内选了40余个典型冰川区来进行相应时段冰川表面高程估算。本产品共计估算了第三极地区超过14000条冰川2000-2015s时段内的表面高程变化,调查面积约占整个第三极地区冰川面积的25%。数据的覆盖范围为除阿尔泰山以外的整个第三极地区,空间分辨率为30m。
2019-12-04
冰盖高程变化数据首先利用2004年和2008年的GLAS12的数据获取两年间的重复轨道,在理想情况下每个轨道都是严格重复测量的,但由于轨道偏差,无法保证轨道按照设计严格重复,偏差在几米到几百米不定,取500m*500m的格网,认为落在同一格网内的点为重复轨道的重复点,相减获取2004-2008年的高程变化,获得年度的高程变化。在格陵兰中部地形平缓区域,高程变化较为准确,但在边缘地带,高程变化明显存在较大误差,可能是因为在边缘区域的坡度较大,500m*500m的范围内的点的高程会有较大的变化,因此在边缘区的高程变化有待改正。为对比不同的方法,采用2004年和2008年的GLAS12的春季数据获取这两年间的交叉点,2004年的降轨与2008年的升轨可以获得一组交叉点对应的高程变化;2004年的升轨与2008年的降轨也可以获得一组交叉点对应的高程变化。两组交叉点作为2004年到2008年的高程变化数据,采用克里金插值获得高程变化图。采用交叉点的方法获取的高程变化得到在边缘区域的结果有明显的改善,但在格陵兰东中部部分区域内的高程变化趋势有明显的误差,这些误差可能是季节性变化引起的。因此,采用2004年到2008年的GLAS12的春季数据获取每两年间的交叉点,每两年可以获得两组交叉点数据,总共获得十组交叉点。将这十组交叉点作为2004年到2008年的高程变化数据,与前两次比较发现,高程变化精度有所提高。
2019-10-28
青藏高原典型冰川DEM采用双站InSAR方法制作,数据采集时间为2013年11月21日,覆盖范围为普若岗日和祁连山西部地区,空间分辨率10米,高程精度0.8m的DEM结果,精度可满足国家1∶10000地形制图的要求。冰川DEM采用TanDEM-X双站InSAR数据,采用改进的SAR干涉处理方法,顾及了双站InSAR在成像几何和相位解缠等方面的特点,高分辨率、高精度地生成了上述两个典型冰川的表面DEM。该数据集采用Geotiff格式,每个典型冰川DEM存储为一个文件夹。 数据的详细情况见青藏高原典型冰川DEM数据集-数据说明。
2018-02-18
在全球气候变暖背景下,世界范围内山地冰川消融强烈,以退缩为主,但现有野外观测发现,喀喇昆仑地区大部分冰川保持稳定或前进状态,为“喀喇昆仑异常”。冰川表面流速是研究冰川动力学和物质平衡的重要参数,研究喀喇昆仑中部区域冰川流速时空变化特征对于认识该区域冰川动力学特征及其对气候变化的响应具有重要的意义。 选取1999-2003年获取的四对Landsat 7 ETM+影像(影像获取时间分别为:1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21),采用全色波段,分辨率为15 m,对每对影像进行精确配准,然后对配准后的两景影像进行互相关计算,获取1999-2003年喀喇昆仑中部区域冰川表面流速。由于研究区域内缺乏流速实地观测数据,因此利用稳定区域的偏移量值评估冰流结果的精度,冰川表面流速误差约为±7 m/year。 冰流场数据覆盖时间从1999年到2003年,时间分辨率为逐年,覆盖范围为喀喇昆仑中部区域,空间分辨率为30 m,每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见喀喇昆仑中部区域冰流场-数据说明。
2018-02-15
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件