青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
2020-12-22
蒸散发监测对农业水资源管理、区域水资源利用规划和社会经济可持续发展至关重要。传统监测ET 方法的局限性主要在于无法做到大面积同时观测,只能局限于观测点上,因此人员设备成本相对较高,既不能提供面上的ET 数据,也不能提供不同土地利用类型和作物类型的ET 数据。利用遥感可以做到ET的定量监测,遥感信息的特点是既能反映地球表面的宏观结构特性,又能反映微观局部的差异。 本数据使用2012年6-9月份MODIS数据和M-SEBAL 模型以及基于参考蒸发比的时间尺度扩展方案估算了黑河中游整个生长季的蒸散发的时空分布,并使用地面观测数据对M-SEBAL 模型和时间尺度扩展方案进行了详细的评估。 其时间分辨率为逐日尺度,空间分辨率为250米,数据覆盖范围为黑河中游,单位为毫米。 数据的投影信息如下:UTM投影,47N
2015-02-24
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件