南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
2022-11-03
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
2022-07-28
北极多年冻土区作为全球碳库的重要组成部分,是全球气候变化最敏感的区域之一。北极地区变暖的速度是全球平均速度的两倍,引发北极多年冻土的快速变化。1982-2015北半球不同类型多年冻土区NDVI变化数据集,时间分辨率为每5年一期,覆盖范围为整个环北极国家,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北半球多年冻土对生态系统的调节服务功能,其所有数据进行了质量控制。
2022-07-04
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
2021-10-08
南极冰盖高程数据采用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制成。为提高ICESat/GLAS数据的精度,采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。
2018-02-14
八宝河流域逐日无云MODIS积雪面积比例数据集(2008.1.1-2014.6.1)是在MODIS逐日积雪产品—MOD10A1的基础上,采用一种基于三次样条函数插值的去云算法进行去云处理后得到(唐志广,2013)。 该数据集采用UTM(横轴等角割圆柱)投影方式,空间分辨率500m,提供逐日的八宝河流域积雪反照率(Snow Albedo Daily-SAD)结果。数据集为逐日文件,从2008年1月1日到2014年6月1日。每个文件为当日的积雪反照率结果,数值为0-100(%),为ENVI标准文件,命名规则为:MOD10A1.AYYYYddd_h25v05_Snow_SAD_Grid_2D_reproj_babaohe_nocloud.img,其中YYYY代表年, ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 进行去云处理的原始MODIS积雪数据产品来源于由美国国家雪冰数据中心(NSIDC)处理的MOD10A1产品,这一数据集为hdf格式,采用sinusoidal投影。 八宝河流域逐日无云MODIS反照率数据集(2008.1.1-2014.1.1)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为500m,经度范围为100.2°~101.2°E,纬度为37.6°~38.3°N。 投影信息:UTM(横轴等角割圆柱)投影。 数据格式:ENVI标准格式。文件命名规则:"MOD10A1.A"+"YYYYddd"+"_h25v05_Snow_SAD_Grid_2D_reproj_babaohe_nocloud"+".img",其中YYYY代表年,ddd代表儒略日(001-365/366),其中该数据集的ENVI文件是由头文件和主体内容构成。头文件包括行数、列数、波段数、文件类型、数据类型、数据记录格式、和投影信息等;以2000055_FSC_0.5km.img 文件为例,其头文件信息如下: ENVI description = { ENVI File, Created [Wed Nov 26 11:50:00 2014]} samples = 187 lines = 132 bands = 1 header offset = 0 file type = ENVI Standard data type = 4 :代表byte型 interleave = bsq :数据记录格式为BSQ sensor type = Unknown byte order = 0 map info = {UTM, 1.000, 1.000, 596240.026, 4244174.613, 5.0000000000e+002, 5.0000000000e+002, 47, North, WGS-84, units=Meters} coordinate system string = {PROJCS["UTM_Zone_47N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT ["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER ["Central_Meridian",99.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} wavelength units = Unknown
2015-02-02
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件