当前浏览: 遥感产品


格陵兰冰盖典型冰川冰裂隙数据集(2018-2020)

我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。

2022-07-29

珠峰太阳辐射数据集(2007-2020)

太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。

2022-07-26

青藏高原0.05°逐日积雪深度数据集(2000-2018)

在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。

2021-10-08

祁连山地区冰川边界(2020)

本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。

2021-06-13

青海省湖泊储水总量实测和模拟数据集(2000-2019)

青海省湖泊储水总量实测和模拟数据集中包含四个子表:第一个子表是根据遥感影像数据监测得到2000年至2019年的时序湖泊面积数据;第二个子表是结合时序湖泊面积数据和面积-库容方程进行估算的结果;第三个子表存储基于湖泊水下三维模拟模型模拟得到湖泊的面积-容积方程;第四个子表为青海省24个典型湖泊储水量实测和模拟关键参数与结果数据,其中包含每个湖泊的模拟水深、最大水深、模拟时的参考水位与对应的湖泊面积。

2021-05-31

青藏高原FY-4A地面太阳辐射产品数据集(2018-2020)

地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。

2021-04-27

青藏高原Landsat系列卫星地表反射率产品(1980s-2019)

1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序地表反射率产品,是很多地表地球物理参数(如叶面积指数、叶绿素和生物量)反演的关键输入参数。2)数据来源及加工方法:所采用的数据源主要来自中国卫星遥感地面站接收存档的Landsat四级产品,青藏高原地区地表反射率产品是基于6S辐射传输模型和MODIS大气产品进行逐像元大气校正,并在此基础上采用C因子法进行BRDF校正得到的;3)数据质量描述:几何精度为RMSE小于等于12m,地表反射率的精度为RMSD低于5%。4) 数据应用成果及前景:在森林、水资源、气候变化等领域长时序信息挖掘分析方面具有重要的应用价值。

2021-04-26

中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2021)

地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。

2021-04-09

中国北方温性草地地上生物量数据集(1993-2019)

本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。

2021-01-22

中亚土地利用和覆盖数据集(1970, 2005, 2015)

1970年土地利用由MSS影像目视解译而成,整体解译精度达90%以上,土地分类按照中国科学院土地利用分类系统进行,具体分类细则请阅读数据说明文档。 2005年和2015年两期数据集从欧洲太空局 (ESA) 全球土地覆被类型数据获取,包括中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)和中国新疆,该数据集有22种土地利用类型,采用IPCC土地利用分类系统,具体分类细则请参阅说明文档。

2021-01-17