引用方式:
Anomalies (unusual patterns) in time-series data give essential, and often actionable information in critical situations. Examples can be found in such fields as healthcare, intrusion detection, finance, security and flight safety. In this paper we propose new conformalized density- and distance-based anomaly detection algorithms for a one-dimensional time-series data. The algorithms use a combination of a feature extraction method, an approach to assess a score whether a new observation differs significantly from a previously observed data, and a probabilistic interpretation of this score based on the conformal paradigm.
文献信息 | |
标题 |
this is test |
此文献未收录 PDF(如何提交?) |
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件