引用方式:
Chen L, Qian X, Shi Y. Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region[J]. Water Resources Management, 2011, 25(13): 3445–3463. doi:10.1007/s11269-011-9864-4
文献信息 | |
标题 |
Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region |
年份 | 2011 |
出版社 |
Water Resources Management |
摘要 |
Identifying critical soil loss-prone areas is necessary to better control soil loss in the Xiangxi watershed, the river basin nearest the Three Gorges Dam. A crucial element of this scheme is the development of a risk assessment model that can identify critical potential soil loss areas for land use prioritization and soil conservation. An assessment model for the risk of potential soil loss based on the revised universal soil loss equation and sediment delivery ratio was developed in this work. The proposed model consists of five multiplied factors: the rain and runoff erosivity, soil erodibility, slope steepness and length, vegetation cover, and sediment delivery. The risk of potential soil loss in the Xiangxi watershed was assessed using the developed model integrated with the ArcGIS platform along with precipitation data, soil data, DEM, and MODIS NDVI images. The risk values ranged from 0 to 478.18, and were categorized into four classes. The classification showed that critical and sub-critical areas accounted for 4.48% and 6.05% respectively, of the entire Xiangxi watershed area. The results of the identification of critical and sub-critical areas were verified by analyzing the relationship between the variations of the agricultural land area and those of sediment discharge. Statistical relationship analysis between the distribution of critical/sub-critical areas and two parameters (the cell distance to the nearest river channel and the slope) showed that the critical and sub-critical areas for potential soil loss in the Xiangxi watershed assemble in the zone with a cell distance below 2,000 m, or in the zone with slopes above 25°. |
此文献未收录 PDF(如何提交?) |
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件