首页 / 数据产品 / 按文献浏览 / Separating vegetation and soil temperature using airborne multiangular remote sensing image data

Separating vegetation and soil temperature using airborne multiangular remote sensing image data

引用方式:

Liu Q, Yan CY, Xiao Q, Yan GJ, Fang L. Separating vegetation and soil temperature using airborne multiangular remote sensing image data. International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 66-75, doi:10.1016/j.jag.2011.10.003.

文献信息
标题

Separating vegetation and soil temperature using airborne multiangular remote sensing image data

年份 2012
出版社

International Journal of Applied Earth Observation and Geoinformation

摘要

Land surface temperature (LST) is a key parameter in land process research. Many research efforts have been devoted to increase the accuracy of LST retrieval from remote sensing. However, because natural land surface is non-isothermal, component temperature is also required in applications such as evapo-transpiration (ET) modeling. This paper proposes a new algorithm to separately retrieve vegetation temperature and soil background temperature from multiangular thermal infrared (TIR) remote sensing data. The algorithm is based on the localized correlation between the visible/near-infrared (VNIR) bands and the TIR band. This method was tested on the airborne image data acquired during the Watershed Allied Telemetry Experimental Research (WATER) campaign. Preliminary validation indicates that the remote sensing-retrieved results can reflect the spatial and temporal trend of component temperatures. The accuracy is within three degrees while the difference between vegetation and soil temperature can be as large as twenty degrees.

PDF 此文献未收录 PDF(如何提交?)